|
| 1 | +import numpy as np |
| 2 | +#import matplotlib.pyplot as plt |
| 3 | +import swmm |
| 4 | +from pond_net import pond_tracker |
| 5 | +from dqn_agent import deep_q_agent |
| 6 | +from ger_fun import reward_function, epsi_greedy, swmm_track |
| 7 | +from ger_fun import build_network, swmm_states |
| 8 | +import random |
| 9 | +import sys |
| 10 | +import os |
| 11 | +os.environ['LD_LIBRARY_PATH'] = os.getcwd() |
| 12 | +load_model=(sys.argv[3]) |
| 13 | +write_model=(sys.argv[4]) |
| 14 | +epi_start=float(sys.argv[1]) |
| 15 | +epi_end = float(sys.argv[2]) |
| 16 | + |
| 17 | +# Nodes as List |
| 18 | +NODES_LIS = {'93-49743' : 'OR39', |
| 19 | + '93-49868' : 'OR34', |
| 20 | + '93-49919' : 'OR44', |
| 21 | + '93-49921' : 'OR45', |
| 22 | + '93-50074' : 'OR38', |
| 23 | + '93-50076' : 'OR46', |
| 24 | + '93-50077' : 'OR48', |
| 25 | + '93-50081' : 'OR47', |
| 26 | + '93-50225' : 'OR36', |
| 27 | + '93-90357' : 'OR43', |
| 28 | + '93-90358' : 'OR35'} |
| 29 | + |
| 30 | +nodes_controlled = {'93-50077' : 'OR48'} |
| 31 | +states_controlled = {'93-50077': ['93-50077']} |
| 32 | +controlled_ponds = {} |
| 33 | + |
| 34 | + |
| 35 | +for i in nodes_controlled.keys(): |
| 36 | + controlled_ponds[i] = pond_tracker(i, |
| 37 | + NODES_LIS[i], |
| 38 | + len(states_controlled[i]), |
| 39 | + 1000000) |
| 40 | + |
| 41 | +all_nodes = [i for i in NODES_LIS.keys()] |
| 42 | +con_nodes = [i for i in nodes_controlled.keys()] |
| 43 | +uco_nodes = list(set(all_nodes)-set(con_nodes)) |
| 44 | + |
| 45 | +action_space = np.linspace(0.0, 10.0, 101) |
| 46 | +uncontrolled_ponds = {} |
| 47 | +for i in uco_nodes: |
| 48 | + uncontrolled_ponds[i] = pond_tracker(i, |
| 49 | + NODES_LIS[i], |
| 50 | + 1, 100) |
| 51 | + |
| 52 | +# Initialize Neural Networks |
| 53 | +models_ac = {} |
| 54 | +for i in nodes_controlled.keys(): |
| 55 | + model = target = build_network(len(states_controlled[i]), |
| 56 | + len(action_space), |
| 57 | + 2, 50, 'relu', 0.0) |
| 58 | + if load_model != 'initial_run': |
| 59 | + model.load_weights(i + load_model) |
| 60 | + |
| 61 | + target.set_weights(model.get_weights()) |
| 62 | + models_ac[i] = [model, target] |
| 63 | + |
| 64 | + |
| 65 | +# Simulation Time Steps |
| 66 | +episode_count = 198 |
| 67 | +timesteps = episode_count*14000 |
| 68 | +time_limit = 14000 |
| 69 | +epsilon_value = np.linspace(epi_start, epi_end, timesteps+10) |
| 70 | + |
| 71 | + |
| 72 | +# Initialize Deep Q agents |
| 73 | +agents_dqn = {} |
| 74 | +for i in nodes_controlled.keys(): |
| 75 | + temp = deep_q_agent(models_ac[i][0], |
| 76 | + models_ac[i][1], |
| 77 | + len(states_controlled[i]), |
| 78 | + controlled_ponds[i].replay_memory, |
| 79 | + epsi_greedy) |
| 80 | + agents_dqn[i] = temp |
| 81 | + |
| 82 | +episode_counter = 0 |
| 83 | +time_sim = 0 |
| 84 | +rain_duration = ['0005', '0010', '0030','0060','0120','0180','0360','0720','1080','1440'] |
| 85 | +return_period = ['001','002','005','010','025','050','100'] |
| 86 | +file_names = [] |
| 87 | +for i in rain_duration: |
| 88 | + for j in return_period: |
| 89 | + temp = 'aa_orifices_v3_scs_' + i + 'min_' + j +'yr.inp' |
| 90 | + file_names.append(temp) |
| 91 | +out = {} |
| 92 | + |
| 93 | +train_data = file_names |
| 94 | +# RL Stuff |
| 95 | +while time_sim < timesteps: |
| 96 | + temp1_name = random.sample(train_data, 1) |
| 97 | + inp = 'aa_orifices_v3_scs_' + '0360' + 'min_' + '025' +'yr.inp' |
| 98 | + print inp |
| 99 | + episode_counter += 1 |
| 100 | + episode_timer = 0 |
| 101 | + swmm.initialize(inp) |
| 102 | + done = False |
| 103 | + for i in nodes_controlled.keys(): |
| 104 | + controlled_ponds[i].forget_past() |
| 105 | + for i in uncontrolled_ponds.keys(): |
| 106 | + uncontrolled_ponds[i].forget_past() |
| 107 | + outflow_track = [] |
| 108 | + print 'New Simulation: ', episode_counter |
| 109 | + temp_gate = 1.0 |
| 110 | + while episode_timer < time_limit: |
| 111 | + episode_timer += 1 |
| 112 | + time_sim += 1 |
| 113 | + # Take a look at whats happening |
| 114 | + for i in nodes_controlled.keys(): |
| 115 | + agents_dqn[i].state_vector = swmm_states(states_controlled[i], |
| 116 | + swmm.DEPTH) |
| 117 | + # Take action |
| 118 | + for i in nodes_controlled.keys(): |
| 119 | + action_step = agents_dqn[i].actions_q(epsilon_value[time_sim], |
| 120 | + action_space) |
| 121 | + agents_dqn[i].action_vector = action_step/100.0 |
| 122 | + swmm.modify_setting(controlled_ponds[i].orifice_id, |
| 123 | + agents_dqn[i].action_vector) |
| 124 | + current_gate = agents_dqn[i].action_vector |
| 125 | + |
| 126 | + # SWMM step |
| 127 | + swmm.run_step() |
| 128 | + |
| 129 | + # Receive the new rewards |
| 130 | + outflow = swmm.get('ZOF1', swmm.INFLOW, swmm.SI) |
| 131 | + water_level = swmm.get('93-50077', swmm.DEPTH, swmm.SI) |
| 132 | + outflow_track.append(outflow) |
| 133 | + overflows = swmm_states(all_nodes, swmm.FLOODING) |
| 134 | + gate_change = np.abs(current_gate - temp_gate) |
| 135 | + temp_gate = current_gate |
| 136 | + r_temp = reward_function(water_level, outflow, gate_change) |
| 137 | + |
| 138 | + for i in nodes_controlled.keys(): |
| 139 | + agents_dqn[i].rewards_vector = r_temp |
| 140 | + |
| 141 | + # Observe the new states |
| 142 | + for i in nodes_controlled.keys(): |
| 143 | + agents_dqn[i].state_new_vector = swmm_states(states_controlled[i], |
| 144 | + swmm.DEPTH) |
| 145 | + # Update Replay Memory |
| 146 | + for i in nodes_controlled.keys(): |
| 147 | + controlled_ponds[i].replay_memory_update(agents_dqn[i].state_vector, |
| 148 | + agents_dqn[i].state_new_vector, |
| 149 | + agents_dqn[i].rewards_vector, |
| 150 | + agents_dqn[i].action_vector, |
| 151 | + agents_dqn[i].terminal_vector) |
| 152 | + |
| 153 | + # Track Controlled ponds |
| 154 | + for i in controlled_ponds.keys(): |
| 155 | + temp = swmm_track(controlled_ponds[i], attributes=["depth", "inflow","outflow","flooding"], controlled=True) |
| 156 | + temp = np.append(temp, np.asarray([agents_dqn[i].action_vector, agents_dqn[i].rewards_vector])) |
| 157 | + controlled_ponds[i].tracker_update(temp) |
| 158 | + |
| 159 | + # Track Uncontrolled ponds |
| 160 | + for i in uncontrolled_ponds.keys(): |
| 161 | + temp = swmm_track(uncontrolled_ponds[i], attributes=["depth", "inflow","outflow","flooding"], controlled=True) |
| 162 | + temp = np.append(temp, np.asarray([1.0, 0.0])) |
| 163 | + uncontrolled_ponds[i].tracker_update(temp) |
| 164 | + |
| 165 | + # Train |
| 166 | + if episode_timer%25 == 0: |
| 167 | + for i in controlled_ponds.keys(): |
| 168 | + agents_dqn[i].train_q(time_sim) |
| 169 | + |
| 170 | + for i in models_ac.keys(): |
| 171 | + temp = i + write_model |
| 172 | + models_ac[i][0].save(temp) |
| 173 | + |
| 174 | + out[episode_counter] = outflow_track |
| 175 | + for i in controlled_ponds.keys(): |
| 176 | + controlled_ponds[i].record_mean() |
| 177 | + |
| 178 | +np.save('controlled_ponds'+ write_model +'.npy', controlled_ponds) |
| 179 | +np.save('outflow_last'+write_model, outflow_track) |
| 180 | +np.save('mean_rewards'+write_model,controlled_ponds['93-50077'].bookkeeping['mean_rewards'].data()) |
| 181 | + |
0 commit comments