-
Notifications
You must be signed in to change notification settings - Fork 612
/
Copy pathonline-nemo-ctc-model.cc
324 lines (249 loc) · 9.43 KB
/
online-nemo-ctc-model.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// sherpa-onnx/csrc/online-nemo-ctc-model.cc
//
// Copyright (c) 2023 Xiaomi Corporation
#include "sherpa-onnx/csrc/online-nemo-ctc-model.h"
#include <algorithm>
#include <cmath>
#include <string>
#if __ANDROID_API__ >= 9
#include "android/asset_manager.h"
#include "android/asset_manager_jni.h"
#endif
#include "sherpa-onnx/csrc/cat.h"
#include "sherpa-onnx/csrc/macros.h"
#include "sherpa-onnx/csrc/onnx-utils.h"
#include "sherpa-onnx/csrc/session.h"
#include "sherpa-onnx/csrc/text-utils.h"
#include "sherpa-onnx/csrc/transpose.h"
#include "sherpa-onnx/csrc/unbind.h"
namespace sherpa_onnx {
class OnlineNeMoCtcModel::Impl {
public:
explicit Impl(const OnlineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_ERROR),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(config.nemo_ctc.model);
Init(buf.data(), buf.size());
}
}
#if __ANDROID_API__ >= 9
Impl(AAssetManager *mgr, const OnlineModelConfig &config)
: config_(config),
env_(ORT_LOGGING_LEVEL_WARNING),
sess_opts_(GetSessionOptions(config)),
allocator_{} {
{
auto buf = ReadFile(mgr, config.nemo_ctc.model);
Init(buf.data(), buf.size());
}
}
#endif
std::vector<Ort::Value> Forward(Ort::Value x,
std::vector<Ort::Value> states) {
Ort::Value &cache_last_channel = states[0];
Ort::Value &cache_last_time = states[1];
Ort::Value &cache_last_channel_len = states[2];
int32_t batch_size = x.GetTensorTypeAndShapeInfo().GetShape()[0];
std::array<int64_t, 1> length_shape{batch_size};
Ort::Value length = Ort::Value::CreateTensor<int64_t>(
allocator_, length_shape.data(), length_shape.size());
int64_t *p_length = length.GetTensorMutableData<int64_t>();
std::fill(p_length, p_length + batch_size, ChunkLength());
// (B, T, C) -> (B, C, T)
x = Transpose12(allocator_, &x);
std::array<Ort::Value, 5> inputs = {
std::move(x), View(&length), std::move(cache_last_channel),
std::move(cache_last_time), std::move(cache_last_channel_len)};
auto out =
sess_->Run({}, input_names_ptr_.data(), inputs.data(), inputs.size(),
output_names_ptr_.data(), output_names_ptr_.size());
// out[0]: logit
// out[1] logit_length
// out[2:] states_next
//
// we need to remove out[1]
std::vector<Ort::Value> ans;
ans.reserve(out.size() - 1);
for (int32_t i = 0; i != out.size(); ++i) {
if (i == 1) {
continue;
}
ans.push_back(std::move(out[i]));
}
return ans;
}
int32_t VocabSize() const { return vocab_size_; }
int32_t ChunkLength() const { return window_size_; }
int32_t ChunkShift() const { return chunk_shift_; }
OrtAllocator *Allocator() const { return allocator_; }
// Return a vector containing 3 tensors
// - cache_last_channel
// - cache_last_time_
// - cache_last_channel_len
std::vector<Ort::Value> GetInitStates() {
std::vector<Ort::Value> ans;
ans.reserve(3);
ans.push_back(View(&cache_last_channel_));
ans.push_back(View(&cache_last_time_));
ans.push_back(View(&cache_last_channel_len_));
return ans;
}
std::vector<Ort::Value> StackStates(
std::vector<std::vector<Ort::Value>> states) const {
int32_t batch_size = static_cast<int32_t>(states.size());
if (batch_size == 1) {
return std::move(states[0]);
}
std::vector<Ort::Value> ans;
// stack cache_last_channel
std::vector<const Ort::Value *> buf(batch_size);
// there are 3 states to be stacked
for (int32_t i = 0; i != 3; ++i) {
buf.clear();
buf.reserve(batch_size);
for (int32_t b = 0; b != batch_size; ++b) {
assert(states[b].size() == 3);
buf.push_back(&states[b][i]);
}
Ort::Value c{nullptr};
if (i == 2) {
c = Cat<int64_t>(allocator_, buf, 0);
} else {
c = Cat(allocator_, buf, 0);
}
ans.push_back(std::move(c));
}
return ans;
}
std::vector<std::vector<Ort::Value>> UnStackStates(
std::vector<Ort::Value> states) const {
assert(states.size() == 3);
std::vector<std::vector<Ort::Value>> ans;
auto shape = states[0].GetTensorTypeAndShapeInfo().GetShape();
int32_t batch_size = shape[0];
ans.resize(batch_size);
if (batch_size == 1) {
ans[0] = std::move(states);
return ans;
}
for (int32_t i = 0; i != 3; ++i) {
std::vector<Ort::Value> v;
if (i == 2) {
v = Unbind<int64_t>(allocator_, &states[i], 0);
} else {
v = Unbind(allocator_, &states[i], 0);
}
assert(v.size() == batch_size);
for (int32_t b = 0; b != batch_size; ++b) {
ans[b].push_back(std::move(v[b]));
}
}
return ans;
}
private:
void Init(void *model_data, size_t model_data_length) {
sess_ = std::make_unique<Ort::Session>(env_, model_data, model_data_length,
sess_opts_);
GetInputNames(sess_.get(), &input_names_, &input_names_ptr_);
GetOutputNames(sess_.get(), &output_names_, &output_names_ptr_);
// get meta data
Ort::ModelMetadata meta_data = sess_->GetModelMetadata();
if (config_.debug) {
std::ostringstream os;
PrintModelMetadata(os, meta_data);
SHERPA_ONNX_LOGE("%s\n", os.str().c_str());
}
Ort::AllocatorWithDefaultOptions allocator; // used in the macro below
SHERPA_ONNX_READ_META_DATA(window_size_, "window_size");
SHERPA_ONNX_READ_META_DATA(chunk_shift_, "chunk_shift");
SHERPA_ONNX_READ_META_DATA(subsampling_factor_, "subsampling_factor");
SHERPA_ONNX_READ_META_DATA(vocab_size_, "vocab_size");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim1_,
"cache_last_channel_dim1");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim2_,
"cache_last_channel_dim2");
SHERPA_ONNX_READ_META_DATA(cache_last_channel_dim3_,
"cache_last_channel_dim3");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim1_, "cache_last_time_dim1");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim2_, "cache_last_time_dim2");
SHERPA_ONNX_READ_META_DATA(cache_last_time_dim3_, "cache_last_time_dim3");
// need to increase by 1 since the blank token is not included in computing
// vocab_size in NeMo.
vocab_size_ += 1;
InitStates();
}
void InitStates() {
std::array<int64_t, 4> cache_last_channel_shape{1, cache_last_channel_dim1_,
cache_last_channel_dim2_,
cache_last_channel_dim3_};
cache_last_channel_ = Ort::Value::CreateTensor<float>(
allocator_, cache_last_channel_shape.data(),
cache_last_channel_shape.size());
Fill<float>(&cache_last_channel_, 0);
std::array<int64_t, 4> cache_last_time_shape{
1, cache_last_time_dim1_, cache_last_time_dim2_, cache_last_time_dim3_};
cache_last_time_ = Ort::Value::CreateTensor<float>(
allocator_, cache_last_time_shape.data(), cache_last_time_shape.size());
Fill<float>(&cache_last_time_, 0);
int64_t shape = 1;
cache_last_channel_len_ =
Ort::Value::CreateTensor<int64_t>(allocator_, &shape, 1);
cache_last_channel_len_.GetTensorMutableData<int64_t>()[0] = 0;
}
private:
OnlineModelConfig config_;
Ort::Env env_;
Ort::SessionOptions sess_opts_;
Ort::AllocatorWithDefaultOptions allocator_;
std::unique_ptr<Ort::Session> sess_;
std::vector<std::string> input_names_;
std::vector<const char *> input_names_ptr_;
std::vector<std::string> output_names_;
std::vector<const char *> output_names_ptr_;
int32_t window_size_;
int32_t chunk_shift_;
int32_t subsampling_factor_;
int32_t vocab_size_;
int32_t cache_last_channel_dim1_;
int32_t cache_last_channel_dim2_;
int32_t cache_last_channel_dim3_;
int32_t cache_last_time_dim1_;
int32_t cache_last_time_dim2_;
int32_t cache_last_time_dim3_;
Ort::Value cache_last_channel_{nullptr};
Ort::Value cache_last_time_{nullptr};
Ort::Value cache_last_channel_len_{nullptr};
};
OnlineNeMoCtcModel::OnlineNeMoCtcModel(const OnlineModelConfig &config)
: impl_(std::make_unique<Impl>(config)) {}
#if __ANDROID_API__ >= 9
OnlineNeMoCtcModel::OnlineNeMoCtcModel(AAssetManager *mgr,
const OnlineModelConfig &config)
: impl_(std::make_unique<Impl>(mgr, config)) {}
#endif
OnlineNeMoCtcModel::~OnlineNeMoCtcModel() = default;
std::vector<Ort::Value> OnlineNeMoCtcModel::Forward(
Ort::Value x, std::vector<Ort::Value> states) const {
return impl_->Forward(std::move(x), std::move(states));
}
int32_t OnlineNeMoCtcModel::VocabSize() const { return impl_->VocabSize(); }
int32_t OnlineNeMoCtcModel::ChunkLength() const { return impl_->ChunkLength(); }
int32_t OnlineNeMoCtcModel::ChunkShift() const { return impl_->ChunkShift(); }
OrtAllocator *OnlineNeMoCtcModel::Allocator() const {
return impl_->Allocator();
}
std::vector<Ort::Value> OnlineNeMoCtcModel::GetInitStates() const {
return impl_->GetInitStates();
}
std::vector<Ort::Value> OnlineNeMoCtcModel::StackStates(
std::vector<std::vector<Ort::Value>> states) const {
return impl_->StackStates(std::move(states));
}
std::vector<std::vector<Ort::Value>> OnlineNeMoCtcModel::UnStackStates(
std::vector<Ort::Value> states) const {
return impl_->UnStackStates(std::move(states));
}
} // namespace sherpa_onnx