Skip to content

Latest commit

 

History

History
1608 lines (1236 loc) · 48 KB

config.adoc

File metadata and controls

1608 lines (1236 loc) · 48 KB

Configuration

This document describes how to create a kanata configuration file. The kanata configuration file will determine your keyboard behaviour upon running kanata.

The configuration file uses S-expression syntax from Lisps. If you are not familiar with any Lisp-like programming language, do not be too worried. This document will hopefully be a sufficient guide to help you customize your keyboard behaviour to your exact liking.

If you have any questions or confusions, feel free to file an issue or start a discussion. If you have ideas for how to improve this document or any other part of the project, please be welcome to make a pull request or file an issue.


Table of contents

Comments

You can add comments to your configuration file. Comments are prefixed with two semicolons. E.g:

;; This is a comment in a kanata configuration file.
;; There is no special syntax for multi-line comments at this time.
;; Comments will be ignored and are intended for you to help understand your
;; own configuration when reading it later.

You can begin a multi-line comment block with #| and end it with |#:

#|
This
is
a multi-line comment block
|#

Required configuration entries

defsrc

Your configuration file must have exactly one defsrc entry. This defines the order of keys that the deflayer entries will operate on.

A defsrc entry is composed of defsrc followed by key names that are separated by whitespace.

It should be noted that the defsrc entry is treated as a long sequence; the amount of whitespace (spaces, tabs, newlines) are not relevant. You may use spaces, tabs, or newlines however you like to visually format defsrc to your liking.

The the primary source of all key names is the str_to_oscode function in the source code. Please feel free to file an issue if you’re unable to find the key you’re looking for.

An example defsrc containing the US QWERTY keyboard keys as an approximately 60% keyboard layout:

(defsrc
  grv  1    2    3    4    5    6    7    8    9    0    -    =    bspc
  tab  q    w    e    r    t    y    u    i    o    p    [    ]    \
  caps a    s    d    f    g    h    j    k    l    ;    '    ret
  lsft z    x    c    v    b    n    m    ,    .    /    rsft
  lctl lmet lalt           spc            ralt rmet rctl
)

For non-US keyboards, see this section.

deflayer

Your configuration file must have at least one deflayer entry. This defines how each physical key mapped in defsrc behaves when kanata runs.

A deflayer configuration entry is followed by the layer name then a list of keys or actions. The usable key names are the same as in defsrc. Actions are explained further on in this document. The whitespace story is the same as with defsrc. The order of keys/actions in deflayer corresponds to the physical key in the same sequence position defined in defsrc.

The first layer defined in your configuration file will be the starting layer when kanata runs. Other layers can be temporarily activated or switched to using actions. There is currently a maximum of 25 layers allowed.

An example defsrc and deflayer that remaps QWERTY to the Dvorak layout would be:

(defsrc
  grv  1    2    3    4    5    6    7    8    9    0    -    =    bspc
  tab  q    w    e    r    t    y    u    i    o    p    [    ]    \
  caps a    s    d    f    g    h    j    k    l    ;    '    ret
  lsft z    x    c    v    b    n    m    ,    .    /    rsft
  lctl lmet lalt           spc            ralt rmet rctl
)

(deflayer dvorak
  grv  1    2    3    4    5    6    7    8    9    0    [    ]    bspc
  tab  '    ,    .    p    y    f    g    c    r    l    /    =    \
  caps a    o    e    u    i    d    h    t    n    s    -    ret
  lsft ;    q    j    k    x    b    m    w    v    z    rsft
  lctl lmet lalt           spc            ralt rmet rctl
)

Review of required configuration entries

If you’re reading in order, you have now seen all of the required entries:

  • defsrc

  • deflayer

An example minimal configuration is:

(defsrc a b c)

(deflayer start 1 2 3)

This will make kanata remap your a b c keys to 1 2 3. This is almost certainly undesirable but is a valid configuration.

Non-US keyboards

For non-US keyboard users, you may have some keys on your keyboard with characters that are not allowed in defsrc by default, at least according to the symbol shown. You can use deflocalkeys to define additional key names that can be used in defsrc, deflayer and anywhere else in the configuration.

There are three variants of deflocalkeys:

  • deflocalkeys-win

  • deflocalkeys-wintercept

  • deflocalkeys-linux

Only one of each deflocalkeys-* variant is allowed. The variants that are not applicable will be ignored, e.g. deflocalkeys-linux and deflocalkeys-wintercept are both ignored when using the default Windows kanata binary.

You can find configurations that others have made in this document. If you do not see your keyboard there and are not confident in using the available tools, please feel welcome to ask for help in a discussion or issue. Please contribute to the document if you are able!

Example:

(deflocalkeys-win
  ì 187
)

(deflocalkeys-wintercept
  ì 187
)

(deflocalkeys-linux
  ì 13
)

(defsrc
  grv  1    2    3    4    5    6    7    8    9    0    -    ì    bspc
)

The number used for a custom key represents the converted value for an OsCode in base 10. This differs between Windows-hooks, Windows-interception, and Linux.

In Linux, evtest will give the correct number for the physical key you press.

In Windows using the default hook mechanism, the non-interception version of the keyboard tester in the kanata repository will give the correct number. (prebuilt binary)

In Windows using Interception, the interception version of the keyboard tester will give the correct number. Between the hook and interception versions, some keys may agree but others may not; do be aware that they are not compatible!

Ideas for improving the user-friendliness of this system are welcome! As mentioned before, please ask for help in an issue or discussion if needed, and help with this document is very welcome so that future users can have an easier time 🙂.

Optional defcfg entries

defcfg

Your configuration file may include a single defcfg entry.

It can be empty but there are options that can change kanata’s behaviour that will be described in this section.

Example:

(defcfg)

process-unmapped-keys

Enabling this configuration makes kanata process keys that are not in defsrc. This is useful if you are only mapping a few keys in defsrc instead of most of the keys on your keyboard.

Without this, some actions like rpt, tap-hold-release, one-shot, will not work correctly for subsequent key presses that are not in defsrc.

This is disabled by default. The reason this is not enabled by default is because some keys may not work correctly if they are intercepted. For example, see the Windows only: windows-altgr option below.

Example:

(defcfg
  process-unmapped-keys yes
)

danger-enable-cmd

This option can be used to enable the cmd action in your configuration. The cmd action allows kanata to execute programs with arguments passed to them.

This requires using a kanata program that is compiled with the cmd action enabled. The reason for this is so that if you choose to, there is no way for kanata to execute arbitrary programs even if you download some random configuration from the internet.

This configuration is disabled by default and can be enabled by giving it the value yes.

Example:

(defcfg
  danger-enable-cmd yes
)

sequence-timeout

This option customizes the key sequence timeout (unit: ms). Its default value is 1000. The purpose of this item is explained in Sequences.

Example:

(defcfg
  sequence-timeout 2000
)

sequence-input-mode

This option customizes the key sequence input mode. Its default value when not configured is hidden-suppressed.

The options are:

  • visible-backspaced: types sequence characters as they are inputted. The typed characters will be erased with backspaces for a valid sequence termination.

  • hidden-suppressed: hides sequence characters as they are typed. Does not output the hidden characters for an invalid sequence termination.

  • hidden-delay-type: hides sequence characters as they are typed. Outputs the hidden characters for an invalid sequence termination either after a timeout or after a non-sequence key is typed.

For visible-backspaced and hidden-delay-type, a sequence leader input will be ignored if a sequence is already active. For historical reasons, and in case it is desired behaviour, a sequence leader input using hidden-suppressed will reset the key sequence.

See Sequences for more about sequences.

Example:

(defcfg
  sequence-input-mode visible-backspaced
)

Linux only: linux-dev

By default, kanata will try to detect which input devices are keyboards and try to intercept them all. However, you may specify exact keyboard devices from the /dev/input directories using the linux-dev configuration.

Example:

(defcfg
  linux-dev /dev/input/by-path/platform-i8042-serio-0-event-kbd
)

If you want to specify multiple keyboards, you can separate the paths with a colon :. Example:

(defcfg
  linux-dev /dev/input/dev1:/dev/input/dev2
)

Due to using the colon to separate devices, if you have a device with colons in its file name, you must escape those colons with backslashes:

(defcfg
  linux-dev /dev/input/path-to\:device
)

log-layer-changes

By default, kanata will log layer changes. However, logging has some processing overhead. If you do not care for the logging, you can choose to disable it.

Example:

(defcfg
  log-layer-changes no
)

Linux only: linux-continue-if-no-devs-found

By default, kanata will crash if no input devices are found. You can change this behaviour by setting linux-continue-if-no-devs-found.

Example:

(defcfg
  linux-continue-if-no-devs-found yes
)

Linux only: linux-unicode-u-code

Unicode on Linux works by pressing Ctrl+Shift+U, typing the unicode hex value, then pressing Enter. However, if you do remapping in userspace, e.g. via xmodmap/xkb, the keycode "U" that kanata outputs may not become a keysym "u" after the userspace remapping. This will be likely if you use non-US, non-European keyboards on top of kanata. For unicode to work, kanata needs to use the keycode that outputs the keysym "u", which might not be the keycode "U".

You can use evtest or kanata --debug, set your userspace key remapping, then press the key that outputs the keysym "u" to see which underlying keycode is sent. Then you can use this configuration to change kanata’s behaviour.

Example:

(defcfg
  linux-unicode-u-code v
)

Linux only: linux-unicode-termination

Unicode on Linux terminates with the Enter key by default. This may not work in some applications. The termination is configurable with the following options:

  • enter

  • space

  • enter-space

  • space-enter

(defcfg
  linux-unicode-termination space
)

Windows only: windows-altgr

There is an option for Windows to help mitigate the strange behaviour of AltGr (ralt) if you’re using that key in your defsrc. This is applicable for many non-US layouts. You can use one of the listed values to change what kanata does with the key:

  • cancel-lctl-release

    • This will remove the lctl press that is generated alonside ralt

  • add-lctl-release

    • This adds an lctl release when ralt is released

Example:

(defcfg
  windows-altgr add-lctl-release
)

For more context, see: #55.

Note
Even with these workarounds, putting lctl`+ralt` in your defsrc may not work properly with other applications that also use keyboard interception. Known application with issues: GWSL/VcXsrv

Windows only: windows-interception-mouse-hwid

This defcfg item allows you to intercept mouse buttons for a specific mouse device. This only works with the Interception driver (the -wintercept variants of the binary).

The intended use case for this is for laptops such as a Thinkpad, which have mouse buttons that may be desirable to activate kanata actions with.

To know what numbers to put into the string, you can run the variant with this defcfg item defined with any numbers. Then when a button is first pressed on the mouse device, kanata will print its hwid in the log; you can then copy-paste that into this configuration entry. If this defcfg item is not defined, the log will not print.

Example:

(defcfg
  windows-interception-mouse-hwid "70, 0, 60, 0"
)

Using multiple defcfg entries

The defcfg entry is treated as a list with pairs of strings. For example:

(defcfg a 1 b 2)

This will be treated as configuration a having value 1 and configuration b having value 2.

An example defcfg containing all of the options is shown below. It should be noted options that are Linux-only or Windows-only will be ignored when used on a non-applicable operating system.

(defcfg
  process-unmapped-keys yes
  danger-enable-cmd yes
  sequence-timeout 2000
  sequence-input-mode visible-backspaced
  log-layer-changes no
  linux-dev /dev/input/dev1:/dev/input/dev2
  linux-continue-if-no-dev-found yes
  linux-unicode-u-code v
  linux-unicode-termination space
  windows-altgr add-lctl-release
  windows-interception-mouse-hwid "70, 0, 60, 0"
)

Aliases and variables

Before learning about actions, it will be useful to first learn about aliases and variables.

Aliases

Using the defalias configuration entry, you can introduce a shortcut label for an action.

Similar to how defcfg works, defalias reads pairs of items in a sequence where the first item in the pair is the alias name and the second item is the action it can be substituted for. However, unlike defcfg, the second item in defalias may be a "list" as opposed to a single string like it was in defcfg.

A list is a sequence of strings separated by whitespace, surrounded by parentheses. All of the configuration entries we’ve looked at so far are lists; defalias is where we’ll first see nested lists in this guide.

Example:

(defalias
  ;; tap for caps lock, hold for left control
  cap (tap-hold 200 200 caps lctl)
)

This alias can be used in deflayer as a substitute for the long action. The alias name is prefixed with @ to signify that it’s an alias as opposed to a normal key.

(deflayer example
  @cap a s d f
)

You may have multiple defalias entries and multiple aliases within a single defalias. Aliases may also refer to other aliases that were defined earlier in the configuration file.

Example:

(defalias one (tap-hold 200 200 caps lctl))
(defalias two (tap-hold 200 200 esc lctl))
(defalias
  three C-A-del ;; Ctrl+Alt+Del
  four (tap-hold 200 200 @three ralt)
)

You can choose to put actions without aliasing them right into deflayer. However, for long actions it is recommended not to do so to keep a nice visual alignment. Visually aligning your deflayer entries will hopefully make your configuration file easier to read.

Example:

(deflayer example
  ;; this is equivalent to the previous deflayer example
  (tap-hold 200 200 caps lctl) a s d f
)

Variables

Using the defvar configuration entry, you can introduce a shortcut label for an arbitrary string or list. Unlike an alias, a variable does not need to be a valid standalone action. In other words, a variable can be used as components of actions.

The most common use case is to define common number strings for actions such as tap-hold, tap-dance, and one-shot.

Similar to how defalias works, defvar reads pairs of items in a sequence where the first item in the pair is the variable name and the second item is a string or list. Variables are allowed to refer to previously defined variables.

Variables can be used to substitute most values. Some notable exceptions are:

  • variables cannot be used in defcfg, defsrc, or deflocalkeys

  • variables cannot be used to substitute a layer name

  • variables cannot be used to substitute an action name

Variables are referred to by prefixing their name with $.

Example:

(defvar
  tap-timeout   100
  hold-timeout  200
  tt $tap-timeout
  ht $hold-timeout
)

(defalias
  th1 (tap-hold $tt $ht caps lctl)
  th2 (tap-hold $tt $ht spc  lsft)
)

Actions

The actions kanata provides are what make it truly customizable. This section explains the available actions.

Live reload

You can put the lrld action onto a key to live-reload your configuration file. If kanata can’t parse the file, it will continue using the previous configuration.

Example:

(deflayer has-live-reload
  lrld a s d f
)

There are variants of lrld: lrld-prev and lrld-next. These will cycle through different configuration files that you specify on kanata’s startup. The first configuration file specified will be the one loaded on startup. The prev/next variants can be used with shortened names of lrpv and lrnx as well.

Example:

(deflayer has-live-reloads
  lrld lrpv lrnx
)

Example specifying multiple config files in the command line:

kanata -c startup.cfg -c 2nd.cfg -c 3rd.cfg

Repeat key

The action rpt repeats the most recently typed key. Holding down this key will not repeatedly send the key. The intended use case is to be able to use a different finger or even thumb key to repeat a typed key, as opposed to double-tapping a key.

Example:

(deflayer has-repeat
  rpt a s d f
)

layer-switch

This action allows you to switch to another "base" layer. This is permanent until a layer-switch to another layer is activated. The concept of a base layer makes more sense when looking at the next action: layer-while-held.

This action accepts a single subsequent string which must be a layer name defined in a deflayer entry.

Example:

(defalias dvk (layer-switch dvorak))

layer-while-held

This action allows you to temporarily change to another layer while the key remains held. When the key is released, you go back to the currently active "base" layer.

This action accepts a single subsequent string which must be a layer name defined in a deflayer entry.

Example:

(defalias nav (layer-while-held navigation))

You may also use layer-toggle in place of layer-while-held; they behave exactly the same. The layer-toggle name is slightly shorter but is a bit inaccurate with regards to its meaning.

Transparent key

If you use a single underscore for a key _ then it acts as a "transparent" key in a deflayer. The behaviour depends if _ is on a base layer or a while-held layer. When _ is pressed on the active base layer, the key will default to the corresponding defsrc key. If _ is pressed on the active while-held layer, the base layer’s behaviour will activate.

Example:

(defsrc
  a b c
)

(deflayer remap-only-c-to-d
  _ _ d
)

No-op

You may use the action XX as a "no operation" key, meaning pressing the key will do nothing. This might be desirable in place of a transparent key on a layer that is not fully mapped so that a key that is intentionally not mapped will do nothing as opposed to typing a letter.

Example:

(deflayer contains-no-op
  XX a s d f
)

Unicode

The unicode action accepts a single unicode character. The character will not be repeatedly typed if you hold the key down.

You may use a unicode character as an alias if desired.

Note
The unicode action may not be correctly accepted by the active application.
Note
If using Linux, make sure to look at the unicode behaviour customization in defcfg.
(defalias
  sml (unicode 😀)
  🙁 (unicode 🙁)
)
(deflayer has-happy-sad
  @sml @🙁 a s d f
)

Output chords/combos

You may want to remap a key to automatically be pressed in combination with modifiers such as Control or Shift. You can achieve this by prefixing the normal key name with one or more of:

  • C-: Left Control

  • A-: Left Alt

  • S-: Left Shift

  • M-: Left Meta, a.k.a. Windows, GUI, Command, Super

  • RA- or AG: Right Alt, a.k.a. AltGr

These modifiers may be combined together if desired.

Example:

(defalias
  ;; Ctrl+C: send SIGINT to a Linux terminal program
  int C-c
  ;; Win+Tab: open Windows' Task View
  tsk M-tab
  ;; Ctrl+Shift+(C|V): copy or paste from certain terminal programs
  cpy C-S-c
  pst C-S-v
)

Release a key or layer

You can release a held key or layer via these actions:

  • release-key: release a key, accepts defsrc compatible names

  • release-layer: release a while-held layer

An example practical use case for release-key is seen in the multi section directly below.

There is currently no known practical use case for release-layer, but it exists nonetheless.

multi

The multi action executes multiple keys or actions in order but also simultaneously. It accepts one or more actions.

This action may result in unexpected or incorrect behaviour when creating a complicated combination of actions. If you find incorrect behaviour, please feel free to file an issue.

An example use case is to press the "Alt" key while also activating another layer.

In the example below, holding the physical "Alt" key will result in a held layer being activated while also holding "Alt" itself. The held layer operates nearly the same as the standard keyboard, so for example the sequence (hold Alt)+(Tab+Tab+Tab) will work as expected. This is in contrast to having a layer where tab is mapped to A-tab, which results in repeated press+release of the two keys and has different behaviour than expected. Some special keys will release the "Alt" key and do some other action that requires "Alt" to be released. In other words, the "Alt" key serves a dual purpose of still fulfilling the "Alt" key role for some button presses (e.g. Tab), but also as a new layer for keys that aren’t typically used with "Alt" to have added useful functionality.

(defalias
  atl (multi alt (layer-while-held alted-with-exceptions))
  lft (multi (release-key alt) left) ;; release alt if held and also press left
  rgt (multi (release-key alt) rght) ;; release alt if held and also press rght
)

(defsrc
  alt  a    s    d    f
)

(deflayer base
  @atl _    _    _    _
)

(deflayer alted-with-exceptions
  _    _    _    @lft @rgt
)

Mouse actions

You can click the left, middle, and right buttons using kanata actions, do vertical/horizontal scrolling, and move the mouse.

Mouse buttons

The mouse button actions are:

  • mlft: left mouse button

  • mmid: middle mouse button

  • mrgt: right mouse button

  • mfwd: forward mouse button

  • mbck: backward mouse button

The mouse button will be held while the key mapped to it is held.

If there are multiple mouse click actions within a single multi action, e.g.

(multi mrgt mlft)

then all the buttons except the last will be clicked then unclicked. The last button will remain held until key release. In the example above, pressing then releasing the key mapped to this action will result in the following event sequence:

  1. press key mapped to multi

  2. click right mouse button

  3. unclick right mouse button

  4. click left mouse button

  5. release key mapped to multi

  6. release left mouse button

There are variants of the standard mouse buttons which "tap" the button. Rather than holding the button while the key is held, a mouse click will be immediately followed by the release. Nothing happens when the key is released. The actions are as follows:

  • mltp: tap left mouse button

  • mmtp: tap middle mouse button

  • mrtp: tap right mouse button

  • mftp: tap forward mouse button

  • mbtp: tap bacward mouse button

Mouse wheel

The mouse wheel actions are:

  • mwheel-up: vertical scroll up

  • mwheel-down: vertical scroll down

  • mwheel-left: horizontal scroll left

  • mwheel-right: horizontal scroll right

All of these actions accept two number strings. The first is the interval (unit: ms) between scroll actions. The second number is the distance (unit: arbitrary). In both Windows and Linux, 120 distance units is equivalent to a notch movement on a physical wheel. You can play with the parameters to see what feels correct to you. Both numbers must be in the range [1,65535].

Note
In Linux, not all desktop environments support the REL_WHEEL_HI_RES event, so kanata just doesn’t use it. Instead, a scroll happens when 120 or more distance units are accumulated. This may result in poor scrolling experience so in Linux it is recommended to use a distance value that is a multiple of 120.

Mouse movement

The mouse movement actions are:

  • movemouse-up

  • movemouse-down

  • movemouse-left

  • movemouse-right

Similar to the mouse wheel actions, all of these actions accept two number strings. The first is the interval (unit: ms) between movement actions and the second number is the distance (unit: pixels) of each movement.

The following are variants of the above mouse movements that apply linear mouse acceleration from the minimum distance to the maximum distance as the mapped key is held.

  • movemouse-accel-up

  • movemouse-accel-down

  • movemouse-accel-left

  • movemouse-accel-right

All these actions accept four number strings. The first number is the interval (unit: ms) between movement actions. The second number is the time it takes (unit: ms) to linearly ramp up from the minimum distance to the maximum distance. The third and fourth numbers are the minimum and maximum distances (unit: pixels) of each movement.

Mouse all actions example

(defalias
  mwu (mwheel-up 50 120)
  mwd (mwheel-down 50 120)
  mwl (mwheel-left 50 120)
  mwr (mwheel-right 50 120)

  ms↑ (movemouse-up 1 1)
  ms← (movemouse-left 1 1)
  ms↓ (movemouse-down 1 1)
  ms→ (movemouse-right 1 1)

  ma↑ (movemouse-accel-up 1 1000 1 5)
  ma← (movemouse-accel-left 1 1000 1 5)
  ma↓ (movemouse-accel-down 1 1000 1 5)
  ma→ (movemouse-accel-right 1 1000 1 5)
)

(deflayer mouse
  _    @mwu @mwd @mwl @mwr _    _    _    _    _    @ma↑ _    _    _
  _    pgup bck  _    fwd  _    _    _    _    @ma← @ma↓ @ma→ _    _
  _    pgdn mlft _    mrgt mmid _    mbck mfwd _    @ms↑ _    _
  _    _    mltp _    mrtp mmtp _    mbtp mftp @ms← @ms↓ @ms→
  _    _    _              _              _    _    _
)

tap-dance

The tap-dance action allows repeated tapping of a key to result in different actions. It is followed by a timeout (unit: ms) and a list of keys or actions. Each time the key is pressed, its timeout will reset. The action will be chosen if one of the following events occur:

  • the timeout expires

  • a different key is pressed

  • the key is repeated up to the final action

You may put normal keys or other actions in tap-dance.

Example:

(defalias
  ;; 1 tap : "A" key
  ;; 2 taps: Control+C
  ;; 3 taps: Switch to another layer
  ;; 4 taps: Escape key
  td (tap-dance 200 (a C-c (layer-switch l2) esc))
)

There is a variant of tap-dance with the name tap-dance-eager. The variant is parsed identically but the difference is that it will activate every action in the sequence as the taps progress.

In the example below, repeated taps will, in order:

  1. type a

  2. erase the a and type bb

  3. erase the bb and type ccc

(defalias
  td2 (tap-dance-eager 500 (
    (macro a) ;; use macro to prevent auto-repeat of the key
    (macro bspc b b)
    (macro bspc bspc c c c)
  ))
)

one-shot

The one-shot action is similar to "sticky keys", if you know what that is. This activates an action or key until either the timeout expires or a different key is used. The one-shot action must be followed by a timeout (unit: ms) and another key or action.

Some of the intended use cases are:

  • press a modifier for exactly one following key press

  • switch to another layer for exactly one following key press

If a one-shot key is held then it will act as the regular key. E.g. holding a key assigned with @os1 in the example below will keep Left Shift held for every key, not just one, as long as it’s still physically pressed.

Pressing multiple one-shot keys in a row within the timeout will combine the actions of those keys and reset the timeout to the value of the most recently pressed one-shot key.

There are four variants of the one-shot action:

  • one-shot-press: end on the first press of another key

  • one-shot-release: end on the first release of another key

  • one-shot-press-pcancel: end on the first press of another key or on re-press of another active one-shot key

  • one-shot-release-pcancel: end on the first release of another key or on re-press of another active one-shot key

It is important to note that the first activation of a one-shot key determines the behaviour with regards to the 4 variants for all subsequent one-shot key activations, even if a following one-shot key has a different configuration than the initial key pressed.

The default name one-shot corresponds to one-shot-press.

Example:

(defalias
  os1 (one-shot 500 (layer-while-held another-layer))
  os2 (one-shot-press 2000 lsft)
  os3 (one-shot-release 2000 lctl)
  os4 (one-shot-press-pcancel 2000 lalt)
  os5 (one-shot-release-pcancel 2000 lmet)
)

tap-hold

The tap-hold action allows you to have one action/key for a "tap" and a different action/key for a "hold". A tap is a rapid press then release of the key whereas a hold is a long press.

The action takes 4 parameters in the listed order:

  1. tap timeout (unit: ms)

  2. hold timeout (unit: ms)

  3. tap action

  4. hold action

The tap timeout is the number of milliseconds within which a rapid press+release+press of a key will result in the tap action being held instead of the hold action activating.

The hold timeout is the number of milliseconds after which the hold action will activate.

There are two additional variants of tap-hold:

  • tap-hold-press

    • If there is a press of a different key, the hold action is activated even if the hold timeout hasn’t expired yet

  • tap-hold-release

    • If there is a press+release of a different key, the hold action is activated even if the hold timeout hasn’t expired yet

These variants may be useful if you want more responsive tap-hold keys, but you should be wary of activating the hold action unintentionally.

Example:

(defalias
  anm (tap-hold         200 200 a @num) ;; tap: a      hold: numbers layer
  oar (tap-hold-press   200 200 o @arr) ;; tap: o      hold: arrows layer
  ech (tap-hold-release 200 200 e @chr) ;; tap: e      hold: chords layer
)

There are further additional variants of tap-hold-press and tap-hold-release:

  1. tap-hold-press-timeout

  2. tap-hold-release-timeout

These variants take a 5th parameter, in addition to the same 4 as the other variants. The 5th parameter is another action, which will activate if the hold timeout expires as opposed to being triggered by other key actions, whereas the non -timeout variants will activate the hold action in both cases.

  • tap-hold-release-keys

This variant takes a 5th parameter which is a list of keys that trigger an early tap when they are pressed while the tap-hold-release-keys action is waiting.

Example:

(defalias
  ;; tap: o    hold: arrows layer    timeout: backspace
  oat (tap-hold-press-timeout   200 200 o @arr bspc)
  ;; tap: e    hold: chords layer    timeout: esc
  ect (tap-hold-release-timeout 200 200 e @chr esc)
  ;; tap: u    hold: misc layer      early tap if any of: (a o e) are pressed
  umk (tap-hold-release-keys 200 200 u @msc (a o e))
)

macro

The macro action will tap a sequence of keys with optional delays. This is different from multi because in the multi action, all keys are held, whereas in macro, keys are pressed then released.

This means that with macro you can have some letters capitalized and others not. This is not possible with multi.

The macro action accepts one or more keys, some actions, chords, and delays (unit: ms). It also accepts a list prefixed with output chord modifiers where the list is subject to the aforementioned restrictions. The number keys will be parsed as delays, so they must be aliased to be used in a macro.

Up to 4 macros can be active at the same time.

The actions supported in macro are:

Example:

(defalias
  : S-;
  8 8
  0 0
  🙃 (unicode 🙃)

  ;; Type "http://localhost:8080"
  lch (macro h t t p @: / / 100 l o c a l h o s t @: @8 @0 @8 @0)

  ;; Type "I am HAPPY my FrIeNd 🙃"
  hpy (macro S-i spc a m spc S-(h a p p y) spc m y S-f r S-i e S-n d spc @🙃)

  ;; alt-tab(x3) and alt-shift-tab(x3) with macro
  tfd (macro A-(tab 200 tab 200 tab))
  tbk (macro A-S-(tab 200 tab 200 tab))
)

There is a variant of the macro action that will cancel all active macros upon releasing the key: macro-release-cancel. It is parsed identically to the non-cancelling version. An example use case for this action is holding down a key to get different outputs, similar to tap-dance but one can see which keys are being outputted.

E.g. in the example below, when holding the key, first 1 is typed, then replaced by ! after 500ms, and finally that is replaced by @ after another 500ms. However, if the key is released, the last character typed will remain and the rest of the macro does not run.

(defalias
  1 1

  ;; macro-release-cancel to output different characters with visual feedback
  ;; after holding for different amounts of time.
  1!@ (macro-release-cancel @1 500 bspc S-1 500 bspc S-2)
)

dynamic-macro

The dynamic-macro actions allow for recording and playing key presses. The dynamic macro records physical key presses, as opposed to kanata’s outputs. This allows the dynamic macro to replicate any action, but it means that if the macro starts and ends on different layers, then the macro might not be properly repeatable.

The action dynamic-macro-record accepts one number (0-65535), which represents the macro ID. Activating this action will begin recording physical key inputs. If dynamic-macro-record with the same ID is pressed again, the recording will end and be saved. If dynamic-macro-record with a different ID is pressed then the current recording will end and be saved, then a new recording with the new ID will begin.

The action dynamic-macro-record-stop will stop and save any active recording.

The action dynamic-macro-play accepts one number (0-65535), which represents the macro ID. Activating this action will play the saved recording of physical keys from a previous dynamic-macro-record with the same macro ID, if it exists.

One can nest dynamic macros within each other, e.g. activate (dynamic-macro-play 1) while recording with (dynamic-macro-record 0). However, dynamic macros cannot recurse; e.g. activating (dynamic-macro-play 0) while recording with (dynamic-macro-record 0) will be ignored.

Example:

(defalias
  dr0 (dynamic-macro-record 0)
  dr1 (dynamic-macro-record 1)
  dr2 (dynamic-macro-record 2)
  dp0 (dynamic-macro-play 0)
  dp1 (dynamic-macro-play 1)
  dp2 (dynamic-macro-play 2)
  dms dynamic-macro-record-stop
)

fork

The fork action accepts two actions and a key list. The first (left) action will activate by default. The second (right) action will activate if any of the keys in the third parameter (right-trigger-keys) are currently active.

Example:

(defalias
  frk (fork k @special (lalt ralt))
)

cmd

The cmd action executes a program with arguments. It accepts one or more strings. The first string is the program that will be run and the following strings are arguments to that program. The arguments are provided to the program in the order written in the config file.

Note
The command is executed directly and not via a shell, so you cannot make use of environment variables, e.g. ~ or $HOME in Linux will not be substituted with your home directory.

Example:

(defalias
  cm1 (cmd rm -fr /tmp/testing)

  ;; You can use bash -c and then a quoted string to execute arbitrary text in
  ;; bash. All text within double-quotes is treated as a single string.
  cm2 (cmd bash -c "echo hello world")
)

There is a variant of cmd: cmd-output-keys. This variant reads the output of the executed program and reads it as an S-expression, similarly to the macro action. However — unlike macro — only keys, chords, and chorded lists are supported. Delays and other actions are not supported.

(defalias
  ;; bash: type date-time as YYYY-MM-DD HH:MM
  pdb (cmd-output-keys bash -c "date +'%F %R' | sed 's/./& /g' | sed 's/:/S-;/g' | sed 's/\(.\{20\}\)\(.*\)/\(\1 spc \2\)/'")

  ;; powershell: type date-time as YYYY-MM-DD HH:MM
  pdp (cmd-output-keys powershell.exe "echo '(' (((Get-Date -Format 'yyyy-MM-dd HH:mm').toCharArray() -join ' ').insert(20, ' spc ') -replace ':','S-;') ')'")
)

arbitrary-code

The arbitrary-code action allows sending an arbitrary number to kanata’s output mechanism. The press is sent when pressed, and the release sent when released. This action can be useful for testing keys that are not yet named or mapped in kanata. Please contribute findings with names and mappings, either in a GitHub issue or as a pull request!

Warning
This is not cross platform!
Warning
When using the Interception driver, this action is still sent over SendInput.
(defalias
  ab1 (arbitrary-code 700)
)

Global overrides

The defoverrides optional configuration item allows you to create global key overrides, irrespective of what actions are used to generate those keys. It accepts pairs of lists:

  1. the input key list that gets replaced

  2. the output key list to replace the input keys with

Both input and output lists accept 0 or more modifier keys (e.g. lctl, rsft) and exactly 1 non-modifier key (e.g. 1, bspc).

Only zero or one defoverrides is allowed in a configuration file.

Example:

;; Swap numbers and their symbols with respect to shift
(defoverrides
  (1) (lsft 1)
  (2) (lsft 2)
  ;; repeat for all remaining numbers

  (lsft 1) (1)
  (lsft 2) (2)
  ;; repeat for all remaining numbers
)

Advanced/weird features

Fake keys

You can define up to 256 fake keys. These keys are not directly mapped to any physical key presses and can only be activated via these actions:

  • (on-press-fakekey <fake key name> <key action>): Activate a fake key action when pressing the key mapped to this action.

  • (on-release-fakekey <fake key name> <key action>): Activate a fake key action when releasing the key mapped to this action.

A fake key can be defined in a deffakekeys configuration entry. Configuring this entry is similar to defalias, but you cannot make use of aliases inside of deffakekeys to shorten an action. You can however refer to previously defined fake keys.

The aforementioned <key action> can be one of three values:

  • press: Press the fake key. It will not be released until another action triggers a release or tap.

  • release: Release the fake key. If it’s not already pressed, this does nothing.

  • tap: Press and release the fake key. If it’s already pressed, this only releases it.

Example:

(deffakekeys
  ctl lctl
  sft lsft
  met lmet
  alt lalt

  ;; Press all modifiers
  pal (multi
        (on-press-fakekey ctl press)
        (on-press-fakekey sft press)
        (on-press-fakekey met press)
        (on-press-fakekey alt press)
      )

  ;; Release all modifiers
  ral (multi
        (on-press-fakekey ctl release)
        (on-press-fakekey sft release)
        (on-press-fakekey met release)
        (on-press-fakekey alt release)
      )
)

(defalias
  psf (on-press-fakekey sft press)
  rsf (on-press-fakekey sft release)

  pal (on-press-fakekey pal tap)
  ral (on-press-fakekey ral tap)
)

(deflayer use-fake-keys
  @psf @rsf @pal @ral a s d f
)

If you find that an application isn’t registering keypresses correctly with multi because the sequence activates too quickly, you can try using fake key actions alongside the delay actions below.

  • on-press-fakekey-delay

  • on-release-fakekey-delay

Do note that processing a fakekey-delay and even a sequence of delays will delay any other inputs from being processed until the fakekey-delays are all complete, so use with care.

Note
You will likely want to use macro instead of fake keys with delays now that macro supports more actions.
(defalias
  stm (multi ;; Shift -> middle mouse with a delay
    (on-press-fakekey lsft press)
    (on-press-fakekey-delay 200)
    (on-press-fakekey mmid press)
    (on-release-fakekey mmid release)
    (on-release-fakekey-delay 200)
    (on-release-fakekey lsft release)
  )
)

For more context, you can read the issue that sparked the creation of fake keys.

Something notable about fake keys is that they don’t always interrupt the state of an active tap-dance-eager. If a macro action is assigned to a fake key, this won’t interrupt a tap dance. However, most other action types, notably a "normal" key action like rsft will still interrupt a tap dance.

Sequences

The sldr action makes kanata go into "sequence" mode. The action name is short for "sequence leader". This comes from Vim which has the concept of a configurable sequence leader key. When in sequence mode, keys are not typed but are saved until one of the following happens:

  • A key is typed that does not match any sequence

  • sequence-timeout milliseconds elapses since the most recent key press

Sequences are configured similarly to deffakekeys. The first parameter of a pair must be a defined fake key name. The second parameter is a list of keys that will activate a fake key tap when typed in the defined order. More precisely, the action triggered is:

(on-press-fakekey <fake key name> tap)

Example:

(defseq git-status (g s t))
(deffakekeys git-status (macro g i t spc s t a t u s))
(defalias rcl (tap-hold-release 200 200 sldr rctl))

For more context, you can read the design and motivation of sequences.

Input chords

Not to be confused with output chords, chord actions allow you to perform various actions based on which specific combination of input keys are pressed together. Such an unordered combination of keys is called a "chord". Each chord can perform a different action, allowing you to bind up to 2^n - 1 different actions to just n keys.

Input chords are configured similarly to defalias with two extra parameters at the beginning of each defchords group: the name of the group and a timeout value after which a chord triggers if it isn’t triggered by a key release or press of a non-chord key before the timeout expires.

(defsrc a b c)
(deflayer default
  @cha @chb @chc
)

(defalias
  cha (chord example a)
  chb (chord example b)
  chc (chord example c)
)

(defchords example 500
  (a      ) a
  (   b   ) b
  (a     c) C-v
  (a  b  c) @three
)

The first item of each pair specifies the keys that make up a given chord. The second item of each pair is the action to be executed when the given chord is pressed and may be any regular or advanced action, including aliases. It currently cannot however contain another chord action.

Note that unlike with defseq, these keys do not directly correspond to real keys and are merely arbitrary labels that make sense within the context of the chord. They are mapped to real keys in layers by configuring the key in the layer to map to a (chord name key) action where name is the name of the chords group (above example) and key is one of these arbitrary labels.

It is perfectly valid to nest these chord actions that enter "chording mode" within other actions like tap-dance and that will work as one would expect. However, this only applies to the first key used to enter "chording mode". Once "chording mode" is active, all other keys will be directly handled by "chording mode" with no regard for wrapper actions; e.g. if a key is pressed and it maps to a tap-hold with a chord as the hold action within, that chord key will immediately activate instead of the key needing to be held for the timeout period.

Custom tap-hold behaviour

This is not currently configurable without modifying the source code, but if you’re willing and/or capable, there is a tap-hold behaviour that is currently not exposed. Using this behaviour, one can be very particular about when and how tap vs. hold will activate by using extra information. The available information that can be used is exactly which keys have been pressed or released as well as the timing in milliseconds of those key presses. The action tap-hold-release-keys makes use of some of this capability, but doesn’t make full use of the power of this functionality.

For more context, you can read the motivation for custom tap-hold behaviour.