-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathdata_analysis.py
189 lines (165 loc) · 6.09 KB
/
data_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import xml.etree.ElementTree as ET
import glob
import os
import numpy
import tqdm
import optparse
import matplotlib.pyplot as plt
from scipy.stats import norm
# from bird import analysis
from bird import loader
parser = optparse.OptionParser()
parser.add_option("--xml_dir", dest="xml_dir")
(options, args) = parser.parse_args()
def represents_float(text):
try:
float(text)
return True
except ValueError:
return False
except TypeError:
return False
def represents_int(text):
try:
int(text)
return True
except ValueError:
return False
except TypeError:
return False
# def elevation_bins(class_id, completes):
# for c in completes:
# if c['ClassId'] = class_id
def groupby(xs, func):
groups = {}
for x in xs:
if func(x) not in groups:
groups[func(x)] = [x]
else:
groups[func(x)].append(x)
return groups.items()
def plot_elevation_histograms(completes):
groups = groupby(completes, lambda x: x['ClassId'])
fig = plt.figure(1)
for key, group in groups:
elevations = [v['Elevation'] for v in group]
plt.hist(elevations, bins=40, range=(0, 4500))
plt.title("Class: {} (mean = {}, std = {})".format(key,
int(numpy.mean(elevations)),
int(numpy.std(elevations))))
plt.xlabel("Elevation [m]")
plt.ylabel("Observations")
fig.savefig(os.path.join("histograms", key + ".png"))
fig.clf()
def plot_date_histograms(xml_roots):
data = [{
'ClassId':r.find("ClassId").text
, 'Month':int(r.find("Date").text.split("-")[1])
} for r in xml_roots]
groups = groupby(data, lambda x: x['ClassId'])
fig = plt.figure(1)
for key, group in groups:
months = [v['Month'] for v in group]
plt.hist(months, bins=12, range=(0, 12))
plt.title("Class: {} ".format(key))
plt.xlabel("Month")
plt.ylabel("Observations")
fig.savefig(os.path.join("date_histograms", key + ".png"))
fig.clf()
def plot_time_histograms(xml_roots):
def parse(time):
v = None
try:
v = int(time.split(":")[0])
except ValueError:
v = -1
except AttributeError:
v = -1
return v
data = [{
'ClassId':r.find("ClassId").text
, 'Time':parse(r.find("Time").text)
} for r in xml_roots]
groups = groupby(data, lambda x: x['ClassId'])
fig = plt.figure(1)
for key, group in groups:
months = [v['Time'] for v in group]
plt.hist(months, bins=24, range=(0, 24))
plt.title("Class: {} ".format(key))
plt.xlabel("Time")
plt.ylabel("Observations")
fig.savefig(os.path.join("time_histograms", key + ".png"))
fig.clf()
def segments_to_training_files(training_segments):
training_files = ["_".join(s.split("_")[:5]) + ".wav" for s in training_segments]
training_files = list(set(training_files))
training_files = [os.path.basename(f) for f in training_files]
return training_files
def build_elevation_distributions(xml_roots, train_dir):
training_segments = glob.glob(os.path.join(train_dir, "*", "*.wav"))
training_files = segments_to_training_files(training_segments)
elevation_observations = {}
index_to_species = loader.build_class_index(train_dir)
species_to_index = {v : k for (k, v) in index_to_species.items()}
nb_classes = len(index_to_species.items())
for r in xml_roots:
file_name = r.find("FileName").text
elevation = r.find("Elevation").text
if file_name in training_files and represents_int(elevation):
class_id = r.find("ClassId").text
# if species_to_index[class_id] == 806:
# print(file_name)
if class_id in elevation_observations:
elevation_observations[class_id].append(int(elevation))
else:
elevation_observations[class_id] = [int(elevation)]
def gpd(mu, sigma, max_elevation, nb_observations):
weight = 1
if nb_observations < 10:
weight = 1
else:
weight = 1/nb_observations
return lambda x: ((1-weight) * norm.pdf(x, mu, sigma) + weight * (1/max_elevation))/2
max_elevation = 5000
elevation_to_probability = {}
for class_id, elevations in elevation_observations.items():
# print(class_id, elevations)
mu = numpy.mean(elevations)
sigma = numpy.std(elevations)
if sigma == 0.0:
elevation_to_probability[class_id] = lambda x: 1/max_elevation
else:
elevation_to_probability[class_id] = gpd(mu, sigma, max_elevation,
len(elevations))
# if species_to_index[class_id] == 806:
# print("index:", species_to_index[class_id], "mean:", mu, "std:", sigma)
# print(elevations)
# print(species_to_index)
elevation_to_probability = {species_to_index[k] : v for (k, v) in
elevation_to_probability.items()}
return elevation_to_probability
def get_completes(xml_roots):
completes = []
for r in xml_roots:
lat = r.find("Latitude").text
lon = r.find("Longitude").text
ele = r.find("Elevation").text
class_id = r.find("ClassId").text
if represents_float(lat) and represents_float(lon) and represents_int(ele):
obj = {
"ClassId": class_id
, "Latitude": float(lat)
, "Longitude": float(lon)
, "Elevation": int(ele)
}
completes.append(obj)
return completes
def load_xml_roots(xml_dir):
xml_paths = glob.glob(os.path.join(xml_dir, "*.xml"))
print("loading xml data ...")
progress = tqdm.tqdm(range(len(xml_paths)))
xml_roots = [ET.parse(f) for (p, f) in zip(progress,
xml_paths)]
return xml_roots
if __name__ == "__main__":
main()