forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_merge.cpp
222 lines (187 loc) · 6.56 KB
/
test_merge.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <cstdio>
#include <random>
#include <gtest/gtest.h>
#include <faiss/IVFlib.h>
#include <faiss/IndexFlat.h>
#include <faiss/IndexIVFFlat.h>
#include <faiss/IndexPreTransform.h>
#include <faiss/MetaIndexes.h>
#include <faiss/invlists/OnDiskInvertedLists.h>
#include "test_util.h"
namespace {
pthread_mutex_t temp_file_mutex = PTHREAD_MUTEX_INITIALIZER;
typedef faiss::idx_t idx_t;
// parameters to use for the test
int d = 64;
size_t nb = 1000;
size_t nq = 100;
int nindex = 4;
int k = 10;
int nlist = 40;
struct CommonData {
std::vector<float> database;
std::vector<float> queries;
std::vector<idx_t> ids;
faiss::IndexFlatL2 quantizer;
CommonData() : database(nb * d), queries(nq * d), ids(nb), quantizer(d) {
std::mt19937 rng;
std::uniform_real_distribution<> distrib;
for (size_t i = 0; i < nb * d; i++) {
database[i] = distrib(rng);
}
for (size_t i = 0; i < nq * d; i++) {
queries[i] = distrib(rng);
}
for (int i = 0; i < nb; i++) {
ids[i] = 123 + 456 * i;
}
{ // just to train the quantizer
faiss::IndexIVFFlat iflat(&quantizer, d, nlist);
iflat.train(nb, database.data());
}
}
};
CommonData cd;
/// perform a search on shards, then merge and search again and
/// compare results.
int compare_merged(
faiss::IndexShards* index_shards,
bool shift_ids,
bool standard_merge = true) {
std::vector<idx_t> refI(k * nq);
std::vector<float> refD(k * nq);
index_shards->search(nq, cd.queries.data(), k, refD.data(), refI.data());
Tempfilename filename(&temp_file_mutex, "/tmp/faiss_tmp_XXXXXX");
std::vector<idx_t> newI(k * nq);
std::vector<float> newD(k * nq);
if (standard_merge) {
for (int i = 1; i < nindex; i++) {
faiss::ivflib::merge_into(
index_shards->at(0), index_shards->at(i), shift_ids);
}
index_shards->syncWithSubIndexes();
} else {
std::vector<const faiss::InvertedLists*> lists;
faiss::IndexIVF* index0 = nullptr;
size_t ntotal = 0;
for (int i = 0; i < nindex; i++) {
auto index_ivf =
dynamic_cast<faiss::IndexIVF*>(index_shards->at(i));
assert(index_ivf);
if (i == 0) {
index0 = index_ivf;
}
lists.push_back(index_ivf->invlists);
ntotal += index_ivf->ntotal;
}
auto il = new faiss::OnDiskInvertedLists(
index0->nlist, index0->code_size, filename.c_str());
il->merge_from(lists.data(), lists.size());
index0->replace_invlists(il, true);
index0->ntotal = ntotal;
}
// search only on first index
index_shards->at(0)->search(
nq, cd.queries.data(), k, newD.data(), newI.data());
size_t ndiff = 0;
for (size_t i = 0; i < k * nq; i++) {
if (refI[i] != newI[i]) {
ndiff++;
}
}
return ndiff;
}
} // namespace
// test on IVFFlat with implicit numbering
TEST(MERGE, merge_flat_no_ids) {
faiss::IndexShards index_shards(d);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add(nb, cd.database.data());
size_t prev_ntotal = index_shards.ntotal;
int ndiff = compare_merged(&index_shards, true);
EXPECT_EQ(prev_ntotal, index_shards.ntotal);
EXPECT_EQ(0, ndiff);
}
// test on IVFFlat, explicit ids
TEST(MERGE, merge_flat) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false);
EXPECT_GE(0, ndiff);
}
// test on IVFFlat and a VectorTransform
TEST(MERGE, merge_flat_vt) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
// here we have to retrain because of the vectorTransform
faiss::RandomRotationMatrix rot(d, d);
rot.init(1234);
faiss::IndexFlatL2 quantizer(d);
{ // just to train the quantizer
faiss::IndexIVFFlat iflat(&quantizer, d, nlist);
faiss::IndexPreTransform ipt(&rot, &iflat);
ipt.train(nb, cd.database.data());
}
for (int i = 0; i < nindex; i++) {
faiss::IndexPreTransform* ipt = new faiss::IndexPreTransform(
new faiss::RandomRotationMatrix(rot),
new faiss::IndexIVFFlat(&quantizer, d, nlist));
ipt->own_fields = true;
index_shards.add_shard(ipt);
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
size_t prev_ntotal = index_shards.ntotal;
int ndiff = compare_merged(&index_shards, false);
EXPECT_EQ(prev_ntotal, index_shards.ntotal);
EXPECT_GE(0, ndiff);
}
// put the merged invfile on disk
TEST(MERGE, merge_flat_ondisk) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
Tempfilename filename(&temp_file_mutex, "/tmp/faiss_tmp_XXXXXX");
for (int i = 0; i < nindex; i++) {
auto ivf = new faiss::IndexIVFFlat(&cd.quantizer, d, nlist);
if (i == 0) {
auto il = new faiss::OnDiskInvertedLists(
ivf->nlist, ivf->code_size, filename.c_str());
ivf->replace_invlists(il, true);
}
index_shards.add_shard(ivf);
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false);
EXPECT_EQ(ndiff, 0);
}
// now use ondisk specific merge
TEST(MERGE, merge_flat_ondisk_2) {
faiss::IndexShards index_shards(d, false, false);
index_shards.own_indices = true;
for (int i = 0; i < nindex; i++) {
index_shards.add_shard(
new faiss::IndexIVFFlat(&cd.quantizer, d, nlist));
}
EXPECT_TRUE(index_shards.is_trained);
index_shards.add_with_ids(nb, cd.database.data(), cd.ids.data());
int ndiff = compare_merged(&index_shards, false, false);
EXPECT_GE(0, ndiff);
}