-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathflan_score.py
72 lines (67 loc) · 2.91 KB
/
flan_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# %%
import torch
import torch.nn as nn
import traceback
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
class FLANScorer:
def __init__(self, device='cuda:0', max_length=1024, checkpoint='google/flan-t5-base'):
# Set up model
self.device = device
self.max_length = max_length
self.tokenizer = AutoTokenizer.from_pretrained(checkpoint)
self.model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
self.model.eval()
self.model.to(device)
# Set up loss
self.loss_fct = nn.NLLLoss(reduction='none', ignore_index=self.model.config.pad_token_id)
self.lsm = nn.LogSoftmax(dim=1)
def load(self):
""" Load model from paraphrase finetuning """
self.model.load_state_dict(torch.load('models/bart.pth', map_location=self.device))
def score(self, srcs, tgts, batch_size):
""" Score a batch of examples """
score_list = []
for i in range(0, len(srcs), batch_size):
src_list = srcs[i: i + batch_size]
tgt_list = tgts[i: i + batch_size]
if i <1:
print('src_list: ',src_list)
print('tgt_list: ', tgt_list)
try:
with torch.no_grad():
encoded_src = self.tokenizer(
src_list,
max_length=self.max_length,
truncation=True,
padding=True,
return_tensors='pt'
)
encoded_tgt = self.tokenizer(
tgt_list,
max_length=self.max_length,
truncation=True,
padding=True,
return_tensors='pt'
)
src_tokens = encoded_src['input_ids'].to(self.device)
src_mask = encoded_src['attention_mask'].to(self.device)
tgt_tokens = encoded_tgt['input_ids'].to(self.device)
tgt_mask = encoded_tgt['attention_mask']
tgt_len = tgt_mask.sum(dim=1).to(self.device)
output = self.model(
input_ids=src_tokens,
attention_mask=src_mask,
labels=tgt_tokens
)
logits = output.logits.view(-1, self.model.config.vocab_size)
loss = self.loss_fct(self.lsm(logits), tgt_tokens.view(-1))
loss = loss.view(tgt_tokens.shape[0], -1)
loss = loss.sum(dim=1) / tgt_len
curr_score_list = [-x.item() for x in loss]
score_list += curr_score_list
except RuntimeError:
traceback.print_exc()
print(f'source: {src_list}')
print(f'target: {tgt_list}')
exit(0)
return score_list