forked from apache/horaedb
-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwriter.rs
569 lines (509 loc) · 19.2 KB
/
writer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
// Copyright 2022 CeresDB Project Authors. Licensed under Apache-2.0.
//! Sst writer implementation based on parquet.
use async_trait::async_trait;
use common_types::{record_batch::RecordBatchWithKey, request_id::RequestId};
use common_util::error::BoxError;
use datafusion::parquet::basic::Compression;
use futures::StreamExt;
use log::{debug, error};
use object_store::{ObjectStoreRef, Path};
use snafu::ResultExt;
use tokio::io::AsyncWrite;
use super::meta_data::RowGroupFilter;
use crate::{
sst::{
factory::{ObjectStorePickerRef, SstWriteOptions},
file::Level,
parquet::{
encoding::ParquetEncoder,
meta_data::{ParquetFilter, ParquetMetaData, RowGroupFilterBuilder},
},
writer::{
self, BuildParquetFilter, EncodeRecordBatch, MetaData, PollRecordBatch,
RecordBatchStream, Result, SstInfo, SstWriter, Storage,
},
},
table_options::StorageFormat,
};
/// The implementation of sst based on parquet and object storage.
#[derive(Debug)]
pub struct ParquetSstWriter<'a> {
/// The path where the data is persisted.
path: &'a Path,
level: Level,
hybrid_encoding: bool,
/// The storage where the data is persist.
store: &'a ObjectStoreRef,
/// Max row group size.
num_rows_per_row_group: usize,
max_buffer_size: usize,
compression: Compression,
}
impl<'a> ParquetSstWriter<'a> {
pub fn new(
path: &'a Path,
level: Level,
hybrid_encoding: bool,
store_picker: &'a ObjectStorePickerRef,
options: &SstWriteOptions,
) -> Self {
let store = store_picker.default_store();
Self {
path,
level,
hybrid_encoding,
store,
num_rows_per_row_group: options.num_rows_per_row_group,
compression: options.compression.into(),
max_buffer_size: options.max_buffer_size,
}
}
}
/// The writer will reorganize the record batches into row groups, and then
/// encode them to parquet file.
struct RecordBatchGroupWriter {
request_id: RequestId,
hybrid_encoding: bool,
input: RecordBatchStream,
input_exhausted: bool,
meta_data: MetaData,
num_rows_per_row_group: usize,
max_buffer_size: usize,
compression: Compression,
level: Level,
}
impl RecordBatchGroupWriter {
/// Fetch an integral row group from the `self.input`.
///
/// Except the last one, every row group is ensured to contains exactly
/// `self.num_rows_per_row_group`. As for the last one, it will cover all
/// the left rows.
async fn fetch_next_row_group(
&mut self,
prev_record_batch: &mut Option<RecordBatchWithKey>,
) -> Result<Vec<RecordBatchWithKey>> {
let mut curr_row_group = vec![];
// Used to record the number of remaining rows to fill `curr_row_group`.
let mut remaining = self.num_rows_per_row_group;
// Keep filling `curr_row_group` until `remaining` is zero.
while remaining > 0 {
// Use the `prev_record_batch` to fill `curr_row_group` if possible.
if let Some(v) = prev_record_batch {
let total_rows = v.num_rows();
if total_rows <= remaining {
// The whole record batch is part of the `curr_row_group`, and let's feed it
// into `curr_row_group`.
curr_row_group.push(prev_record_batch.take().unwrap());
remaining -= total_rows;
} else {
// Only first `remaining` rows of the record batch belongs to `curr_row_group`,
// the rest should be put to `prev_record_batch` for next row group.
curr_row_group.push(v.slice(0, remaining));
*v = v.slice(remaining, total_rows - remaining);
remaining = 0;
}
continue;
}
if self.input_exhausted {
break;
}
// Previous record batch has been exhausted, and let's fetch next record batch.
match self.input.next().await {
Some(v) => {
let v = v.context(PollRecordBatch)?;
debug_assert!(
!v.is_empty(),
"found empty record batch, request id:{}",
self.request_id
);
// Updated the exhausted `prev_record_batch`, and let next loop to continue to
// fill `curr_row_group`.
prev_record_batch.replace(v);
}
None => {
self.input_exhausted = true;
break;
}
};
}
Ok(curr_row_group)
}
/// Build the parquet filter for the given `row_group`.
fn build_row_group_filter(
&self,
row_group_batch: &[RecordBatchWithKey],
) -> Result<RowGroupFilter> {
let mut builder = RowGroupFilterBuilder::new(row_group_batch[0].schema_with_key());
for partial_batch in row_group_batch {
for (col_idx, column) in partial_batch.columns().iter().enumerate() {
for row in 0..column.num_rows() {
let datum = column.datum(row);
let bytes = datum.to_bytes();
builder.add_key(col_idx, &bytes);
}
}
}
builder.build().box_err().context(BuildParquetFilter)
}
fn need_custom_filter(&self) -> bool {
// TODO: support filter in hybrid storage format [#435](https://github.com/CeresDB/ceresdb/issues/435)
!self.hybrid_encoding && !self.level.is_min()
}
async fn write_all<W: AsyncWrite + Send + Unpin + 'static>(mut self, sink: W) -> Result<usize> {
let mut prev_record_batch: Option<RecordBatchWithKey> = None;
let mut arrow_row_group = Vec::new();
let mut total_num_rows = 0;
let mut parquet_encoder = ParquetEncoder::try_new(
sink,
&self.meta_data.schema,
self.hybrid_encoding,
self.num_rows_per_row_group,
self.max_buffer_size,
self.compression,
)
.box_err()
.context(EncodeRecordBatch)?;
let mut parquet_filter = if self.need_custom_filter() {
Some(ParquetFilter::default())
} else {
None
};
loop {
let row_group = self.fetch_next_row_group(&mut prev_record_batch).await?;
if row_group.is_empty() {
break;
}
if let Some(filter) = &mut parquet_filter {
filter.push_row_group_filter(self.build_row_group_filter(&row_group)?);
}
let num_batches = row_group.len();
for record_batch in row_group {
arrow_row_group.push(record_batch.into_record_batch().into_arrow_record_batch());
}
let num_rows = parquet_encoder
.encode_record_batches(arrow_row_group)
.await
.box_err()
.context(EncodeRecordBatch)?;
// TODO: it will be better to use `arrow_row_group.clear()` to reuse the
// allocated memory.
arrow_row_group = Vec::with_capacity(num_batches);
total_num_rows += num_rows;
}
let parquet_meta_data = {
let mut parquet_meta_data = ParquetMetaData::from(self.meta_data);
parquet_meta_data.parquet_filter = parquet_filter;
parquet_meta_data
};
parquet_encoder
.set_meta_data(parquet_meta_data)
.box_err()
.context(EncodeRecordBatch)?;
parquet_encoder
.close()
.await
.box_err()
.context(EncodeRecordBatch)?;
Ok(total_num_rows)
}
}
struct ObjectStoreMultiUploadAborter<'a> {
location: &'a Path,
session_id: String,
object_store: &'a ObjectStoreRef,
}
impl<'a> ObjectStoreMultiUploadAborter<'a> {
async fn initialize_upload(
object_store: &'a ObjectStoreRef,
location: &'a Path,
) -> Result<(
ObjectStoreMultiUploadAborter<'a>,
Box<dyn AsyncWrite + Unpin + Send>,
)> {
let (session_id, upload_writer) = object_store
.put_multipart(location)
.await
.context(Storage)?;
let aborter = Self {
location,
session_id,
object_store,
};
Ok((aborter, upload_writer))
}
async fn abort(self) -> Result<()> {
self.object_store
.abort_multipart(self.location, &self.session_id)
.await
.context(Storage)
}
}
#[async_trait]
impl<'a> SstWriter for ParquetSstWriter<'a> {
async fn write(
&mut self,
request_id: RequestId,
meta: &MetaData,
input: RecordBatchStream,
) -> writer::Result<SstInfo> {
debug!(
"Build parquet file, request_id:{}, meta:{:?}, num_rows_per_row_group:{}",
request_id, meta, self.num_rows_per_row_group
);
let group_writer = RecordBatchGroupWriter {
hybrid_encoding: self.hybrid_encoding,
request_id,
input,
input_exhausted: false,
num_rows_per_row_group: self.num_rows_per_row_group,
max_buffer_size: self.max_buffer_size,
compression: self.compression,
meta_data: meta.clone(),
level: self.level,
};
let (aborter, sink) =
ObjectStoreMultiUploadAborter::initialize_upload(self.store, self.path).await?;
let total_num_rows = match group_writer.write_all(sink).await {
Ok(v) => v,
Err(e) => {
if let Err(e) = aborter.abort().await {
// The uploading file will be leaked if failed to abort. A repair command will
// be provided to clean up the leaked files.
error!(
"Failed to abort multi-upload for sst:{}, err:{}",
self.path, e
);
}
return Err(e);
}
};
let file_head = self.store.head(self.path).await.context(Storage)?;
let storage_format = if self.hybrid_encoding {
StorageFormat::Hybrid
} else {
StorageFormat::Columnar
};
Ok(SstInfo {
file_size: file_head.size,
row_num: total_num_rows,
storage_format,
})
}
}
#[cfg(test)]
mod tests {
use std::{sync::Arc, task::Poll};
use common_types::{
bytes::Bytes,
projected_schema::ProjectedSchema,
tests::{build_row, build_schema},
time::{TimeRange, Timestamp},
};
use common_util::{
runtime::{self, Runtime},
tests::init_log_for_test,
};
use futures::stream;
use object_store::LocalFileSystem;
use table_engine::predicate::Predicate;
use tempfile::tempdir;
use super::*;
use crate::{
row_iter::tests::build_record_batch_with_key,
sst::{
factory::{
Factory, FactoryImpl, ReadFrequency, ScanOptions, SstReadOptions, SstWriteOptions,
},
parquet::AsyncParquetReader,
reader::{tests::check_stream, SstReader},
},
table_options::{self, StorageFormatHint},
};
// TODO(xikai): add test for reverse reader
#[test]
fn test_parquet_build_and_read() {
init_log_for_test();
let runtime = Arc::new(runtime::Builder::default().build().unwrap());
parquet_write_and_then_read_back(runtime.clone(), 3, vec![3, 3, 3, 3, 3]);
parquet_write_and_then_read_back(runtime.clone(), 4, vec![4, 4, 4, 3]);
parquet_write_and_then_read_back(runtime, 5, vec![5, 5, 5]);
}
fn parquet_write_and_then_read_back(
runtime: Arc<Runtime>,
num_rows_per_row_group: usize,
expected_num_rows: Vec<i64>,
) {
runtime.block_on(async {
let sst_factory = FactoryImpl;
let sst_write_options = SstWriteOptions {
storage_format_hint: StorageFormatHint::Auto,
num_rows_per_row_group,
compression: table_options::Compression::Uncompressed,
max_buffer_size: 0,
};
let dir = tempdir().unwrap();
let root = dir.path();
let store: ObjectStoreRef = Arc::new(LocalFileSystem::new_with_prefix(root).unwrap());
let store_picker: ObjectStorePickerRef = Arc::new(store);
let sst_file_path = Path::from("data.par");
let schema = build_schema();
let projected_schema = ProjectedSchema::no_projection(schema.clone());
let sst_meta = MetaData {
min_key: Bytes::from_static(b"100"),
max_key: Bytes::from_static(b"200"),
time_range: TimeRange::new_unchecked(Timestamp::new(1), Timestamp::new(2)),
max_sequence: 200,
schema: schema.clone(),
};
let mut counter = 5;
let record_batch_stream = Box::new(stream::poll_fn(move |_| -> Poll<Option<_>> {
if counter == 0 {
return Poll::Ready(None);
}
counter -= 1;
// reach here when counter is 9 7 5 3 1
let ts = 100 + counter;
let rows = vec![
build_row(b"a", ts, 10.0, "v4", 1000, 1_000_000),
build_row(b"b", ts, 10.0, "v4", 1000, 1_000_000),
build_row(b"c", ts, 10.0, "v4", 1000, 1_000_000),
];
let batch = build_record_batch_with_key(schema.clone(), rows);
Poll::Ready(Some(Ok(batch)))
}));
let mut writer = sst_factory
.create_writer(
&sst_write_options,
&sst_file_path,
&store_picker,
Level::MAX,
)
.await
.unwrap();
let sst_info = writer
.write(RequestId::next_id(), &sst_meta, record_batch_stream)
.await
.unwrap();
assert_eq!(15, sst_info.row_num);
let scan_options = ScanOptions::default();
// read sst back to test
let sst_read_options = SstReadOptions {
reverse: false,
frequency: ReadFrequency::Frequent,
num_rows_per_row_group: 5,
projected_schema,
predicate: Arc::new(Predicate::empty()),
meta_cache: None,
scan_options,
runtime: runtime.clone(),
};
let mut reader: Box<dyn SstReader + Send> = {
let mut reader = AsyncParquetReader::new(
&sst_file_path,
&sst_read_options,
None,
&store_picker,
None,
);
let mut sst_meta_readback = reader
.meta_data()
.await
.unwrap()
.as_parquet()
.unwrap()
.as_ref()
.clone();
// sst filter is built insider sst writer, so overwrite to default for
// comparison.
sst_meta_readback.parquet_filter = Default::default();
assert_eq!(&sst_meta_readback, &ParquetMetaData::from(sst_meta));
assert_eq!(
expected_num_rows,
reader
.row_groups()
.await
.iter()
.map(|g| g.num_rows())
.collect::<Vec<_>>()
);
Box::new(reader)
};
let mut stream = reader.read().await.unwrap();
let mut expect_rows = vec![];
for counter in &[4, 3, 2, 1, 0] {
expect_rows.push(build_row(b"a", 100 + counter, 10.0, "v4", 1000, 1_000_000));
expect_rows.push(build_row(b"b", 100 + counter, 10.0, "v4", 1000, 1_000_000));
expect_rows.push(build_row(b"c", 100 + counter, 10.0, "v4", 1000, 1_000_000));
}
check_stream(&mut stream, expect_rows).await;
});
}
#[tokio::test]
async fn test_fetch_row_group() {
// rows per group: 10
let testcases = vec![
// input, expected
(10, vec![], vec![]),
(10, vec![10, 10], vec![10, 10]),
(10, vec![10, 10, 1], vec![10, 10, 1]),
(10, vec![10, 10, 21], vec![10, 10, 10, 10, 1]),
(10, vec![5, 6, 10], vec![10, 10, 1]),
(10, vec![5, 4, 4, 30], vec![10, 10, 10, 10, 3]),
(10, vec![20, 7, 23, 20], vec![10, 10, 10, 10, 10, 10, 10]),
(10, vec![21], vec![10, 10, 1]),
(10, vec![2, 2, 2, 2, 2], vec![10]),
(4, vec![3, 3, 3, 3, 3], vec![4, 4, 4, 3]),
(5, vec![3, 3, 3, 3, 3], vec![5, 5, 5]),
];
for (num_rows_per_group, input, expected) in testcases {
check_num_rows_of_row_group(num_rows_per_group, input, expected).await;
}
}
async fn check_num_rows_of_row_group(
num_rows_per_row_group: usize,
input_num_rows: Vec<usize>,
expected_num_rows: Vec<usize>,
) {
init_log_for_test();
let schema = build_schema();
let mut poll_cnt = 0;
let schema_clone = schema.clone();
let record_batch_stream = Box::new(stream::poll_fn(move |_ctx| -> Poll<Option<_>> {
if poll_cnt == input_num_rows.len() {
return Poll::Ready(None);
}
let rows = (0..input_num_rows[poll_cnt])
.map(|_| build_row(b"a", 100, 10.0, "v4", 1000, 1_000_000))
.collect::<Vec<_>>();
let batch = build_record_batch_with_key(schema_clone.clone(), rows);
poll_cnt += 1;
Poll::Ready(Some(Ok(batch)))
}));
let mut group_writer = RecordBatchGroupWriter {
request_id: RequestId::next_id(),
hybrid_encoding: false,
input: record_batch_stream,
input_exhausted: false,
num_rows_per_row_group,
compression: Compression::UNCOMPRESSED,
meta_data: MetaData {
min_key: Default::default(),
max_key: Default::default(),
time_range: Default::default(),
max_sequence: 1,
schema,
},
max_buffer_size: 0,
level: Level::default(),
};
let mut prev_record_batch = None;
for expect_num_row in expected_num_rows {
let batch = group_writer
.fetch_next_row_group(&mut prev_record_batch)
.await
.unwrap();
let actual_num_row: usize = batch.iter().map(|b| b.num_rows()).sum();
assert_eq!(expect_num_row, actual_num_row);
}
}
}