-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfleiss.m
35 lines (34 loc) · 1.31 KB
/
fleiss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
% Syntax: fleiss(k, X, alpha, label, rubric_version, video_name)
%
% Inputs:
% k = number of categories
% X = square data matrix the annotations as a nxm matrix
% where n = number of labellers & m = frames.
% The (i,j) entry represents the category {1,2,3,4...} the
% ith labeller put for the jth frame.
% alpha = Significance Level
% Label = The label being labelled
% Rubric_version = Version of the Rubric
% Video_name = Name of the Video
%
% Outputs:
% - Visualisation of The Annotation Matrix
% - Fleiss Matrix
% - Overall Fleiss Kappa value (score)
% - Percent Overall Agreement (p_bar)
% - Kappa standard error
% - Kappa confidence interval
% - Kappa benchmarks by Landis and Koch
% - z test & P Value
function fleiss(k, matrix, alpha, label, rubric_version, video_name, labelers)
n=size(matrix, 1); %Number of Labellers
matrix(matrix(:) == 10) = k; %Changing 10 to highest value k
visualisation(matrix,n, label, rubric_version, video_name, labelers);
F = Create_Fleiss_Matrix(k,matrix);
%figure
temp = F;
heat_map(temp, k, label, rubric_version, video_name);
%figure
fleiss_score(F,alpha, label, video_name);
fclose('all');
end