-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01-model-training.py
153 lines (122 loc) · 5.2 KB
/
01-model-training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import numpy as np
from torch.utils.data import DataLoader
from torch import nn, optim
from torchvision import datasets, transforms
class EarlyStopping:
def __init__(self, patience, patience_increase, verbose=False, path='checkpoint.pt'):
self.patience = patience
self.patience_increase = patience_increase
self.verbose = verbose
self.path = path
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = x.view(-1, 28 * 28)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
def save_checkpoint(val_loss, model, early_stopping):
"""Saves model when validation loss decrease."""
if early_stopping.verbose:
print(f'Validation loss decreased ({early_stopping.val_loss_min:.6f} --> {val_loss:.6f}). Saving checkpoint ...')
torch.save(model.state_dict(), early_stopping.path)
early_stopping.val_loss_min = val_loss
def early_stopping_step(val_loss, model, early_stopping):
score = -val_loss
if early_stopping.best_score is None:
early_stopping.best_score = score
if score < early_stopping.best_score:
early_stopping.counter += 1
if early_stopping.counter < early_stopping.patience:
return early_stopping
if early_stopping.verbose:
print(f'Validation loss did not improve enough after {early_stopping.patience} epochs. '
f'Stopping the training.')
early_stopping.early_stop = True
else:
early_stopping.best_score = score
early_stopping.patience += early_stopping.patience_increase
save_checkpoint(val_loss, model, early_stopping)
early_stopping.counter = 0
return early_stopping
def train(model, device, train_loader, optimizer, criterion, epoch):
model.train()
train_loss = 0.0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_loss /= len(train_loader)
print('Epoch: {}\tTraining Loss: {:.6f}'.format(epoch, train_loss))
return train_loss
def validate(model, device, val_loader, criterion, early_stopping):
model.eval()
val_loss = 0
with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
output = model(data)
val_loss += criterion(output, target).item()
val_loss /= len(val_loader)
print(f'Validation loss: {val_loss:.4f}')
if early_stopping is not None:
early_stopping_step(val_loss, model, early_stopping)
return val_loss
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += nn.functional.cross_entropy(output, target, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = correct / len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), 100. * accuracy))
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_set = datasets.MNIST('./data', train=True, download=True, transform=transform)
test_set = datasets.MNIST('./data', train=False, download=True, transform=transform)
# Split the train set into train and validation sets.
train_set, val_set = torch.utils.data.random_split(train_set, [50000, 10000])
train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
val_loader = DataLoader(val_set, batch_size=64, shuffle=False)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False)
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
early_stopping = EarlyStopping(patience=10, patience_increase=5, verbose=True)
for epoch in range(1, 1000):
train_loss = train(model, device, train_loader, optimizer, criterion, epoch)
val_loss = validate(model, device, val_loader, criterion, early_stopping)
early_stopping = early_stopping_step(val_loss, model, early_stopping)
if early_stopping.early_stop:
break
# Load and test the best checkpoint.
model.load_state_dict(torch.load(early_stopping.path))
test(model, device, test_loader)
if __name__ == '__main__':
main()