-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqr_factorisation.jl
79 lines (70 loc) · 1.24 KB
/
qr_factorisation.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#Classical GS
function qrcgs(A)
(m,n) = size(A)
Q = zeros(m,n)
R = zeros(n,n)
for j=1:m
aj = A[:,j]
vj = aj
for i = 1:j-1
R[i,j] = dot(Q[:,i], aj)
vj -= Q[:,i] * R[i,j]
end
R[j,j] = norm(vj)
Q[:,j] = vj / R[j,j]
end
return Q,R
end;
#Modified GS
function qrmgs(A)
(m,n) = size(A)
Q = zeros(m,n)
R = zeros(n,n)
for j = 1:m
aj = A[:,j]
vj = aj
for i = 1:j-1
R[i,j] = dot(Q[:,i], vj)
vj -= Q[:,i]*R[i,j]
end
R[j,j] = norm(vj)
Q[:,j] = vj / R[j,j]
end
return Q,R
end;
#Householder
function qrhouse(A)
(m,n) = size(A)
Q = eye(m)
R = float(A)
for i = 1:n
x = R[i:m,i]
e = zeros(length(x))
e[1] = 1
vk = sign(x[1]) * norm(x) * e + x
vk = vk / norm(vk)
R[i:m,i:n] -= 2 * vk * vk' * R[i:m,i:n]
Q[i:m,i:n] -= Q[i:m,i:n] * 2 * vk * vk'
end
return Q,R
end;
function backsub(R,b)
n = length(b)
x = zeros(n,1)
for i = n:-1:1
x[i] = b[i]
for j = i+1:n
x[i] = x[i] - R[i,j] * x[j]
end
x[i] = x[i] / R[i,i]
end
return x
end;
A=[1.0 1.0 1.0; 1.0 0.0 1.0 ; 0.0 1.0 1.0 ];
(q,r)=qrhouse(A);
(JuliaQ, JuliaR)=qr(A);
A
q
r
JuliaQ
JuliaR