-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathuser.py
220 lines (190 loc) · 8.73 KB
/
user.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import time
import os
import numpy as np
from postproc.KNN import KNN
class User():
def __init__(self, ARCH, DATA, datadir, logdir, modeldir,split):
# parameters
self.ARCH = ARCH
self.DATA = DATA
self.datadir = datadir
self.logdir = logdir
self.modeldir = modeldir
self.split = split
# get the data
from dataset.kitti.parser import Parser
self.parser = Parser(root=self.datadir,
train_sequences=self.DATA["split"]["train"],
valid_sequences=self.DATA["split"]["valid"],
test_sequences=self.DATA["split"]["test"],
labels=self.DATA["labels"],
color_map=self.DATA["color_map"],
learning_map=self.DATA["learning_map"],
learning_map_inv=self.DATA["learning_map_inv"],
sensor=self.ARCH["dataset"]["sensor"],
max_points=self.ARCH["dataset"]["max_points"],
batch_size=1,
workers=self.ARCH["train"]["workers"],
gt=True,
shuffle_train=False)
# concatenate the encoder and the head
with torch.no_grad():
torch.nn.Module.dump_patches = True
if self.ARCH["train"]["pipeline"] == "hardnet":
from modules.network.HarDNet import HarDNet
self.model = HarDNet(self.parser.get_n_classes(), self.ARCH["train"]["aux_loss"])
if self.ARCH["train"]["pipeline"] == "res":
from modules.network.ResNet import ResNet_34
self.model = ResNet_34(self.parser.get_n_classes(), self.ARCH["train"]["aux_loss"])
def convert_relu_to_softplus(model, act):
for child_name, child in model.named_children():
if isinstance(child, nn.LeakyReLU):
setattr(model, child_name, act)
else:
convert_relu_to_softplus(child, act)
if self.ARCH["train"]["act"] == "Hardswish":
convert_relu_to_softplus(self.model, nn.Hardswish())
elif self.ARCH["train"]["act"] == "SiLU":
convert_relu_to_softplus(self.model, nn.SiLU())
if self.ARCH["train"]["pipeline"] == "fid":
from modules.network.Fid import ResNet_34
self.model = ResNet_34(self.parser.get_n_classes(), self.ARCH["train"]["aux_loss"])
if self.ARCH["train"]["act"] == "Hardswish":
convert_relu_to_softplus(self.model, nn.Hardswish())
elif self.ARCH["train"]["act"] == "SiLU":
convert_relu_to_softplus(self.model, nn.SiLU())
# print(self.model)
w_dict = torch.load(modeldir + "/SENet_valid_best",
map_location=lambda storage, loc: storage)
self.model.load_state_dict(w_dict['state_dict'], strict=True)
# use knn post processing?
self.post = None
if self.ARCH["post"]["KNN"]["use"]:
self.post = KNN(self.ARCH["post"]["KNN"]["params"],
self.parser.get_n_classes())
print(self.parser.get_n_classes())
# GPU?
self.gpu = False
self.model_single = self.model
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Infering in device: ", self.device)
if torch.cuda.is_available() and torch.cuda.device_count() > 0:
cudnn.benchmark = True
cudnn.fastest = True
self.gpu = True
self.model.cuda()
def infer(self):
cnn = []
knn = []
if self.split == None:
self.infer_subset(loader=self.parser.get_train_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
# do valid set
self.infer_subset(loader=self.parser.get_valid_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
# do test set
self.infer_subset(loader=self.parser.get_test_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
elif self.split == 'valid':
self.infer_subset(loader=self.parser.get_valid_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
elif self.split == 'train':
self.infer_subset(loader=self.parser.get_train_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
else:
self.infer_subset(loader=self.parser.get_test_set(),
to_orig_fn=self.parser.to_original, cnn=cnn, knn=knn)
print("Mean CNN inference time:{}\t std:{}".format(np.mean(cnn), np.std(cnn)))
print("Mean KNN inference time:{}\t std:{}".format(np.mean(knn), np.std(knn)))
print("Total Frames:{}".format(len(cnn)))
print("Finished Infering")
return
def infer_subset(self, loader, to_orig_fn,cnn,knn):
# switch to evaluate mode
self.model.eval()
total_time=0
total_frames=0
# empty the cache to infer in high res
if self.gpu:
torch.cuda.empty_cache()
with torch.no_grad():
for i, (proj_in, proj_mask, _, _, path_seq, path_name, p_x, p_y, proj_range, unproj_range, _, _, _, _, npoints) in enumerate(loader):
# first cut to rela size (batch size one allows it)
p_x = p_x[0, :npoints]
p_y = p_y[0, :npoints]
proj_range = proj_range[0, :npoints]
unproj_range = unproj_range[0, :npoints]
path_seq = path_seq[0]
path_name = path_name[0]
if self.gpu:
proj_in = proj_in.cuda()
p_x = p_x.cuda()
p_y = p_y.cuda()
if self.post:
proj_range = proj_range.cuda()
unproj_range = unproj_range.cuda()
end = time.time()
if self.ARCH["train"]["aux_loss"]:
with torch.cuda.amp.autocast(enabled=True):
[proj_output, x_2, x_3, x_4] = self.model(proj_in)
else:
with torch.cuda.amp.autocast(enabled=True):
proj_output = self.model(proj_in)
proj_argmax = proj_output[0].argmax(dim=0)
if torch.cuda.is_available():
torch.cuda.synchronize()
res = time.time() - end
print("Network seq", path_seq, "scan", path_name,
"in", res, "sec")
end = time.time()
cnn.append(res)
if self.post:
# knn postproc
unproj_argmax = self.post(proj_range,
unproj_range,
proj_argmax,
p_x,
p_y)
# # nla postproc
# proj_unfold_range, proj_unfold_pre = NN_filter(proj_range, proj_argmax)
# proj_unfold_range=proj_unfold_range.cpu().numpy()
# proj_unfold_pre=proj_unfold_pre.cpu().numpy()
# unproj_range = unproj_range.cpu().numpy()
# # Check this part. Maybe not correct (Low speed caused by for loop)
# # Just simply change from
# # https://github.com/placeforyiming/IROS21-FIDNet-SemanticKITTI/blob/7f90b45a765b8bba042b25f642cf12d8fccb5bc2/semantic_inference.py#L177-L202
# for jj in range(len(p_x)):
# py, px = p_y[jj].cpu().numpy(), p_x[jj].cpu().numpy()
# if unproj_range[jj] == proj_range[py, px]:
# unproj_argmax = proj_argmax[py, px]
# else:
# potential_label = proj_unfold_pre[0, :, py, px]
# potential_range = proj_unfold_range[0, :, py, px]
# min_arg = np.argmin(abs(potential_range - unproj_range[jj]))
# unproj_argmax = potential_label[min_arg]
else:
# put in original pointcloud using indexes
unproj_argmax = proj_argmax[p_y, p_x]
# measure elapsed time
if torch.cuda.is_available():
torch.cuda.synchronize()
res = time.time() - end
print("KNN Infered seq", path_seq, "scan", path_name,
"in", res, "sec")
knn.append(res)
end = time.time()
# save scan
# get the first scan in batch and project scan
pred_np = unproj_argmax.cpu().numpy()
pred_np = pred_np.reshape((-1)).astype(np.int32)
# map to original label
pred_np = to_orig_fn(pred_np)
# save scan
path = os.path.join(self.logdir, "sequences",
path_seq, "predictions", path_name)
pred_np.tofile(path)