|
| 1 | +library() |
| 2 | +install.packages(c("GGally", "ggplot2")) |
| 3 | +install.packages("tidyverse") |
| 4 | +library(ggplot2) |
| 5 | +install.packages(ggplot2) |
| 6 | +install.packages("ggplot2") |
| 7 | +mean(1,2,3) |
| 8 | +mean(c(1,2,3)) |
| 9 | +??diamonds |
| 10 | +ggplot(data = diamonds, aes(x = carat, y = price)) + |
| 11 | +geom_point() |
| 12 | +library(ggplot2) |
| 13 | +ggplot(data = diamonds, aes(x = carat, y = price)) + |
| 14 | +geom_point() |
| 15 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut)) + |
| 16 | +geom_point() |
| 17 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut)) + |
| 18 | +geom_point() + |
| 19 | +facet_grid(. ~ clarity) |
| 20 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 21 | +geom_jitter() |
| 22 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 23 | +geom_jitter() |
| 24 | +plot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 25 | +geom_jitter() |
| 26 | +geom_point() + |
| 27 | +facet_grid(. ~ clarity) |
| 28 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 29 | +geom_jitter() |
| 30 | +geom_point() + |
| 31 | +facet_grid(. ~ clarity) |
| 32 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 33 | +geom_jitter() + |
| 34 | +geom_point() + |
| 35 | +facet_grid(. ~ clarity |
| 36 | +ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) + |
| 37 | +geom_jitter() + |
| 38 | +geom_point() + |
| 39 | +facet_grid(. ~ clarity) |
| 40 | +ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) + |
| 41 | +geom_jitter() + |
| 42 | +geom_point() + |
| 43 | +facet_grid(. ~ clarity) |
| 44 | +ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) + |
| 45 | +geom_jitter() + |
| 46 | +geom_hex() + |
| 47 | +facet_grid(. ~ clarity) |
| 48 | +install.packages("hexbin") |
| 49 | +ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) + |
| 50 | +geom_jitter() + |
| 51 | +geom_hex() + |
| 52 | +facet_grid(. ~ clarity) |
| 53 | +install.packages(lmtest) |
| 54 | +install.packages("lmtest") |
| 55 | +library(lmtest) |
| 56 | +model = lm(diamonds, price ~ carat + cut + color + clarity + x + y + z + depth + table) |
| 57 | +model = lm(data = diamonds, price ~ carat + cut + color + clarity + x + y + z + depth + table) |
| 58 | +summary(model) |
| 59 | +library(dplyr) |
| 60 | +library(memisc) |
| 61 | +library(haven) |
| 62 | +library(lmtest) |
| 63 | +library(ggplot2) |
| 64 | +library(ggfortify) |
| 65 | +df = as.data.frame(read_spss("BD final - estudantes.sav")) |
| 66 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 67 | +pressao = as.numeric(df$losango_motivacao), |
| 68 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 69 | +fraudenctx = as.numeric(df$norma_contexto), |
| 70 | +fraudencop = as.numeric(df$norma_copiar), |
| 71 | +fraudenplg = as.numeric(df$norma_plagio), |
| 72 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 73 | +fraudenavg = rowMeans(data[4:7], na.rm = TRUE), |
| 74 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 75 | +setwd("~/Documents/Comportamento Organizacional") |
| 76 | +df = as.data.frame(read_spss("BD final - estudantes.sav")) |
| 77 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 78 | +pressao = as.numeric(df$losango_motivacao), |
| 79 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 80 | +fraudenctx = as.numeric(df$norma_contexto), |
| 81 | +fraudencop = as.numeric(df$norma_copiar), |
| 82 | +fraudenplg = as.numeric(df$norma_plagio), |
| 83 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 84 | +fraudenavg = rowMeans(data[4:7], na.rm = TRUE), |
| 85 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 86 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 87 | +pressao = as.numeric(df$losango_motivacao), |
| 88 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 89 | +fraudenctx = as.numeric(df$norma_contexto), |
| 90 | +fraudencop = as.numeric(df$norma_copiar), |
| 91 | +fraudenplg = as.numeric(df$norma_plagio), |
| 92 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 93 | +fraudenavg = rowMeans(data[4:7], na.rm = TRUE), |
| 94 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 95 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 96 | +pressao = as.numeric(df$losango_motivacao), |
| 97 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 98 | +fraudenctx = as.numeric(df$norma_contexto), |
| 99 | +fraudencop = as.numeric(df$norma_copiar), |
| 100 | +fraudenplg = as.numeric(df$norma_plagio), |
| 101 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 102 | +fraudenavg = rowMeans(data[4:7], na.rm = TRUE), |
| 103 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 104 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 105 | +pressao = as.numeric(df$losango_motivacao), |
| 106 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 107 | +fraudenctx = as.numeric(df$norma_contexto), |
| 108 | +fraudencop = as.numeric(df$norma_copiar), |
| 109 | +fraudenplg = as.numeric(df$norma_plagio), |
| 110 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 111 | +fraudenavg = rowMeans(data[4:7], na.rm = TRUE), |
| 112 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 113 | +View(df) |
| 114 | +data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade), |
| 115 | +pressao = as.numeric(df$losango_motivacao), |
| 116 | +racionalizacao = as.numeric(df$tri_dist_moral), |
| 117 | +fraudenctx = as.numeric(df$norma_contexto), |
| 118 | +fraudencop = as.numeric(df$norma_copiar), |
| 119 | +fraudenplg = as.numeric(df$norma_plagio), |
| 120 | +fraudeneud = as.numeric(df$norma_eu_desonesto), |
| 121 | +fraudenavg = rowMeans(df[68:71], na.rm = TRUE), |
| 122 | +fraudkfreq = rowMeans(df[34:50], na.rm = TRUE)) |
| 123 | +GGally::ggpairs(data) |
| 124 | +model11 = lm(data = data, fraudenctx ~ oportunidade + pressao + racionalizacao) |
| 125 | +model12 = lm(data = data, fraudencop ~ oportunidade + pressao + racionalizacao) |
| 126 | +model13 = lm(data = data, fraudenplg ~ oportunidade + pressao + racionalizacao) |
| 127 | +model14 = lm(data = data, fraudeneud ~ oportunidade + pressao + racionalizacao) |
| 128 | +model15 = lm(data = data, fraudenavg ~ oportunidade + pressao + racionalizacao) |
| 129 | +### Comparing Models |
| 130 | +AIC(model11, model12, model13, model14, model15) |
| 131 | +model21 = lm(data = data, fraudkfreq ~ oportunidade + pressao + racionalizacao) |
| 132 | +summary(model15) |
| 133 | +summary(model14) |
| 134 | +summary(model13) |
| 135 | +summary(model12) |
| 136 | +summary(model12) |
| 137 | +summary(model11) |
| 138 | +### Comparing Models |
| 139 | +AIC(model11, model12, model13, model14, model15) |
| 140 | +bptest(model15) |
| 141 | +bptest(model14) |
0 commit comments