Skip to content

Commit f47b746

Browse files
committed
First commit
Data and first models
1 parent e82a886 commit f47b746

File tree

4 files changed

+224
-0
lines changed

4 files changed

+224
-0
lines changed

BD final - estudantes.sav

3.62 MB
Binary file not shown.

_RData.gz

513 KB
Binary file not shown.

_Rhistory

+141
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,141 @@
1+
library()
2+
install.packages(c("GGally", "ggplot2"))
3+
install.packages("tidyverse")
4+
library(ggplot2)
5+
install.packages(ggplot2)
6+
install.packages("ggplot2")
7+
mean(1,2,3)
8+
mean(c(1,2,3))
9+
??diamonds
10+
ggplot(data = diamonds, aes(x = carat, y = price)) +
11+
geom_point()
12+
library(ggplot2)
13+
ggplot(data = diamonds, aes(x = carat, y = price)) +
14+
geom_point()
15+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut)) +
16+
geom_point()
17+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut)) +
18+
geom_point() +
19+
facet_grid(. ~ clarity)
20+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
21+
geom_jitter()
22+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
23+
geom_jitter()
24+
plot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
25+
geom_jitter()
26+
geom_point() +
27+
facet_grid(. ~ clarity)
28+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
29+
geom_jitter()
30+
geom_point() +
31+
facet_grid(. ~ clarity)
32+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
33+
geom_jitter() +
34+
geom_point() +
35+
facet_grid(. ~ clarity
36+
ggplot(data = diamonds, aes(x = carat, y = price, color = cut, size = color)) +
37+
geom_jitter() +
38+
geom_point() +
39+
facet_grid(. ~ clarity)
40+
ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) +
41+
geom_jitter() +
42+
geom_point() +
43+
facet_grid(. ~ clarity)
44+
ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) +
45+
geom_jitter() +
46+
geom_hex() +
47+
facet_grid(. ~ clarity)
48+
install.packages("hexbin")
49+
ggplot(data = diamonds, aes(x = carat, y = log(price), color = cut, size = color)) +
50+
geom_jitter() +
51+
geom_hex() +
52+
facet_grid(. ~ clarity)
53+
install.packages(lmtest)
54+
install.packages("lmtest")
55+
library(lmtest)
56+
model = lm(diamonds, price ~ carat + cut + color + clarity + x + y + z + depth + table)
57+
model = lm(data = diamonds, price ~ carat + cut + color + clarity + x + y + z + depth + table)
58+
summary(model)
59+
library(dplyr)
60+
library(memisc)
61+
library(haven)
62+
library(lmtest)
63+
library(ggplot2)
64+
library(ggfortify)
65+
df = as.data.frame(read_spss("BD final - estudantes.sav"))
66+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
67+
pressao = as.numeric(df$losango_motivacao),
68+
racionalizacao = as.numeric(df$tri_dist_moral),
69+
fraudenctx = as.numeric(df$norma_contexto),
70+
fraudencop = as.numeric(df$norma_copiar),
71+
fraudenplg = as.numeric(df$norma_plagio),
72+
fraudeneud = as.numeric(df$norma_eu_desonesto),
73+
fraudenavg = rowMeans(data[4:7], na.rm = TRUE),
74+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
75+
setwd("~/Documents/Comportamento Organizacional")
76+
df = as.data.frame(read_spss("BD final - estudantes.sav"))
77+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
78+
pressao = as.numeric(df$losango_motivacao),
79+
racionalizacao = as.numeric(df$tri_dist_moral),
80+
fraudenctx = as.numeric(df$norma_contexto),
81+
fraudencop = as.numeric(df$norma_copiar),
82+
fraudenplg = as.numeric(df$norma_plagio),
83+
fraudeneud = as.numeric(df$norma_eu_desonesto),
84+
fraudenavg = rowMeans(data[4:7], na.rm = TRUE),
85+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
86+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
87+
pressao = as.numeric(df$losango_motivacao),
88+
racionalizacao = as.numeric(df$tri_dist_moral),
89+
fraudenctx = as.numeric(df$norma_contexto),
90+
fraudencop = as.numeric(df$norma_copiar),
91+
fraudenplg = as.numeric(df$norma_plagio),
92+
fraudeneud = as.numeric(df$norma_eu_desonesto),
93+
fraudenavg = rowMeans(data[4:7], na.rm = TRUE),
94+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
95+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
96+
pressao = as.numeric(df$losango_motivacao),
97+
racionalizacao = as.numeric(df$tri_dist_moral),
98+
fraudenctx = as.numeric(df$norma_contexto),
99+
fraudencop = as.numeric(df$norma_copiar),
100+
fraudenplg = as.numeric(df$norma_plagio),
101+
fraudeneud = as.numeric(df$norma_eu_desonesto),
102+
fraudenavg = rowMeans(data[4:7], na.rm = TRUE),
103+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
104+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
105+
pressao = as.numeric(df$losango_motivacao),
106+
racionalizacao = as.numeric(df$tri_dist_moral),
107+
fraudenctx = as.numeric(df$norma_contexto),
108+
fraudencop = as.numeric(df$norma_copiar),
109+
fraudenplg = as.numeric(df$norma_plagio),
110+
fraudeneud = as.numeric(df$norma_eu_desonesto),
111+
fraudenavg = rowMeans(data[4:7], na.rm = TRUE),
112+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
113+
View(df)
114+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
115+
pressao = as.numeric(df$losango_motivacao),
116+
racionalizacao = as.numeric(df$tri_dist_moral),
117+
fraudenctx = as.numeric(df$norma_contexto),
118+
fraudencop = as.numeric(df$norma_copiar),
119+
fraudenplg = as.numeric(df$norma_plagio),
120+
fraudeneud = as.numeric(df$norma_eu_desonesto),
121+
fraudenavg = rowMeans(df[68:71], na.rm = TRUE),
122+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
123+
GGally::ggpairs(data)
124+
model11 = lm(data = data, fraudenctx ~ oportunidade + pressao + racionalizacao)
125+
model12 = lm(data = data, fraudencop ~ oportunidade + pressao + racionalizacao)
126+
model13 = lm(data = data, fraudenplg ~ oportunidade + pressao + racionalizacao)
127+
model14 = lm(data = data, fraudeneud ~ oportunidade + pressao + racionalizacao)
128+
model15 = lm(data = data, fraudenavg ~ oportunidade + pressao + racionalizacao)
129+
### Comparing Models
130+
AIC(model11, model12, model13, model14, model15)
131+
model21 = lm(data = data, fraudkfreq ~ oportunidade + pressao + racionalizacao)
132+
summary(model15)
133+
summary(model14)
134+
summary(model13)
135+
summary(model12)
136+
summary(model12)
137+
summary(model11)
138+
### Comparing Models
139+
AIC(model11, model12, model13, model14, model15)
140+
bptest(model15)
141+
bptest(model14)

script.R

+83
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,83 @@
1+
install.packages("ggfortify")
2+
install.packages("haven")
3+
install.packages("dplyr")
4+
install.packages("memisc")
5+
install.packages("GGally")
6+
install.packages("tidyr")
7+
8+
library(dplyr)
9+
library(memisc)
10+
library(haven)
11+
library(lmtest)
12+
library(ggplot2)
13+
library(ggfortify)
14+
15+
16+
17+
df = as.data.frame(read_spss("BD final - estudantes.sav"))
18+
19+
# Base variables
20+
21+
data = transmute(df, oportunidade = as.numeric(df$tri_oportunidade),
22+
pressao = as.numeric(df$losango_motivacao),
23+
racionalizacao = as.numeric(df$tri_dist_moral),
24+
fraudenctx = as.numeric(df$norma_contexto),
25+
fraudencop = as.numeric(df$norma_copiar),
26+
fraudenplg = as.numeric(df$norma_plagio),
27+
fraudeneud = as.numeric(df$norma_eu_desonesto),
28+
fraudenavg = rowMeans(df[68:71], na.rm = TRUE),
29+
fraudkfreq = rowMeans(df[34:50], na.rm = TRUE))
30+
31+
32+
GGally::ggpairs(data)
33+
# Models
34+
## Fraude by the Norm
35+
### Norma Contexto
36+
37+
model11 = lm(data = data, fraudenctx ~ oportunidade + pressao + racionalizacao)
38+
summary(model11)
39+
autoplot(model11)
40+
41+
### Norma Copiar
42+
43+
model12 = lm(data = data, fraudencop ~ oportunidade + pressao + racionalizacao)
44+
summary(model12)
45+
46+
### Norma Plágio
47+
48+
model13 = lm(data = data, fraudenplg ~ oportunidade + pressao + racionalizacao)
49+
summary(model13)
50+
51+
### Norma Eu desonesto
52+
53+
model14 = lm(data = data, fraudeneud ~ oportunidade + pressao + racionalizacao)
54+
summary(model14)
55+
56+
### Norma Avg
57+
58+
model15 = lm(data = data, fraudenavg ~ oportunidade + pressao + racionalizacao)
59+
summary(model15)
60+
autoplot(model15) + theme_bw()
61+
autoplot(prcomp(model15), scale = TRUE)
62+
63+
### Comparing Models
64+
AIC(model11, model12, model13, model14, model15)
65+
66+
## Fraud by Frequency
67+
68+
model21 = lm(data = data, fraudkfreq ~ oportunidade + pressao + racionalizacao)
69+
summary(model21)
70+
71+
# Tests
72+
# Multicollinearity - bptest, gqtest
73+
bptest(model11)
74+
bptest(model12)
75+
bptest(model13)
76+
bptest(model14)
77+
bptest(model15)
78+
79+
gqtest(model13)
80+
gqtest(model15)
81+
82+
# Heteroskedascitity - PCA?
83+

0 commit comments

Comments
 (0)