-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathmodeling_diffusion.py
768 lines (650 loc) · 32.6 KB
/
modeling_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
#!/usr/bin/env python
# Copyright 2024 Columbia Artificial Intelligence, Robotics Lab,
# and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
TODO(alexander-soare):
- Remove reliance on diffusers for DDPMScheduler and LR scheduler.
"""
import math
from collections import deque
from typing import Callable
import einops
import numpy as np
import torch
import torch.nn.functional as F # noqa: N812
import torchvision
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
from torch import Tensor, nn
from lerobot.common.constants import OBS_ENV, OBS_ROBOT
from lerobot.common.policies.diffusion.configuration_diffusion import DiffusionConfig
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.policies.utils import (
get_device_from_parameters,
get_dtype_from_parameters,
get_output_shape,
populate_queues,
smoothen_actions,
)
class DiffusionPolicy(PreTrainedPolicy):
"""
Diffusion Policy as per "Diffusion Policy: Visuomotor Policy Learning via Action Diffusion"
(paper: https://arxiv.org/abs/2303.04137, code: https://github.com/real-stanford/diffusion_policy).
"""
config_class = DiffusionConfig
name = "diffusion"
def __init__(
self,
config: DiffusionConfig,
dataset_stats: dict[str, dict[str, Tensor]] | None = None,
):
"""
Args:
config: Policy configuration class instance or None, in which case the default instantiation of
the configuration class is used.
dataset_stats: Dataset statistics to be used for normalization. If not passed here, it is expected
that they will be passed with a call to `load_state_dict` before the policy is used.
"""
super().__init__(config)
config.validate_features()
self.config = config
self.normalize_inputs = Normalize(config.input_features, config.normalization_mapping, dataset_stats)
self.normalize_targets = Normalize(
config.output_features, config.normalization_mapping, dataset_stats
)
self.unnormalize_outputs = Unnormalize(
config.output_features, config.normalization_mapping, dataset_stats
)
# queues are populated during rollout of the policy, they contain the n latest observations and actions
self._queues = None
self.diffusion = DiffusionModel(config)
self.reset()
def get_optim_params(self) -> dict:
return self.diffusion.parameters()
def reset(self):
"""Clear observation and action queues. Should be called on `env.reset()`"""
self._queues = {
"observation.state": deque(maxlen=self.config.n_obs_steps),
"action": deque(maxlen=self.config.n_action_steps),
}
if self.config.image_features:
self._queues["observation.images"] = deque(maxlen=self.config.n_obs_steps)
if self.config.env_state_feature:
self._queues["observation.environment_state"] = deque(maxlen=self.config.n_obs_steps)
@torch.no_grad
def select_action(self, batch: dict[str, Tensor]) -> Tensor:
"""Select a single action given environment observations.
This method handles caching a history of observations and an action trajectory generated by the
underlying diffusion model. Here's how it works:
- `n_obs_steps` steps worth of observations are cached (for the first steps, the observation is
copied `n_obs_steps` times to fill the cache).
- The diffusion model generates `horizon` steps worth of actions.
- `n_action_steps` worth of actions are actually kept for execution, starting from the current step.
Schematically this looks like:
----------------------------------------------------------------------------------------------
(legend: o = n_obs_steps, h = horizon, a = n_action_steps)
|timestep | n-o+1 | n-o+2 | ..... | n | ..... | n+a-1 | n+a | ..... | n-o+h |
|observation is used | YES | YES | YES | YES | NO | NO | NO | NO | NO |
|action is generated | YES | YES | YES | YES | YES | YES | YES | YES | YES |
|action is used | NO | NO | NO | YES | YES | YES | NO | NO | NO |
----------------------------------------------------------------------------------------------
Note that this means we require: `n_action_steps <= horizon - n_obs_steps + 1`. Also, note that
"horizon" may not the best name to describe what the variable actually means, because this period is
actually measured from the first observation which (if `n_obs_steps` > 1) happened in the past.
"""
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack(
[batch[key] for key in self.config.image_features], dim=-4
)
# Note: It's important that this happens after stacking the images into a single key.
self._queues = populate_queues(self._queues, batch)
if len(self._queues["action"]) == 0:
# stack n latest observations from the queue
batch = {k: torch.stack(list(self._queues[k]), dim=1) for k in batch if k in self._queues}
actions = self.diffusion.generate_actions(batch)
# TODO(rcadene): make above methods return output dictionary?
actions = self.unnormalize_outputs({"action": actions})["action"]
# use low-pass filter to prevent jerky actions
actions = smoothen_actions(actions)
self._queues["action"].extend(actions.transpose(0, 1))
action = self._queues["action"].popleft()
return action
def forward(self, batch: dict[str, Tensor]) -> tuple[Tensor, None]:
"""Run the batch through the model and compute the loss for training or validation."""
batch = self.normalize_inputs(batch)
if self.config.image_features:
batch = dict(batch) # shallow copy so that adding a key doesn't modify the original
batch["observation.images"] = torch.stack(
[batch[key] for key in self.config.image_features], dim=-4
)
batch = self.normalize_targets(batch)
loss = self.diffusion.compute_loss(batch)
# no output_dict so returning None
return loss, None
def _make_noise_scheduler(name: str, **kwargs: dict) -> DDPMScheduler | DDIMScheduler:
"""
Factory for noise scheduler instances of the requested type. All kwargs are passed
to the scheduler.
"""
if name == "DDPM":
return DDPMScheduler(**kwargs)
elif name == "DDIM":
return DDIMScheduler(**kwargs)
else:
raise ValueError(f"Unsupported noise scheduler type {name}")
class DiffusionModel(nn.Module):
def __init__(self, config: DiffusionConfig):
super().__init__()
self.config = config
# Build observation encoders (depending on which observations are provided).
global_cond_dim = self.config.robot_state_feature.shape[0]
if self.config.image_features:
num_images = len(self.config.image_features)
if self.config.use_separate_rgb_encoder_per_camera:
encoders = [DiffusionRgbEncoder(config) for _ in range(num_images)]
self.rgb_encoder = nn.ModuleList(encoders)
global_cond_dim += encoders[0].feature_dim * num_images
else:
self.rgb_encoder = DiffusionRgbEncoder(config)
global_cond_dim += self.rgb_encoder.feature_dim * num_images
if self.config.env_state_feature:
global_cond_dim += self.config.env_state_feature.shape[0]
self.unet = DiffusionConditionalUnet1d(config, global_cond_dim=global_cond_dim * config.n_obs_steps)
self.noise_scheduler = _make_noise_scheduler(
config.noise_scheduler_type,
num_train_timesteps=config.num_train_timesteps,
beta_start=config.beta_start,
beta_end=config.beta_end,
beta_schedule=config.beta_schedule,
clip_sample=config.clip_sample,
clip_sample_range=config.clip_sample_range,
prediction_type=config.prediction_type,
)
if config.num_inference_steps is None:
self.num_inference_steps = self.noise_scheduler.config.num_train_timesteps
else:
self.num_inference_steps = config.num_inference_steps
# ========= inference ============
def conditional_sample(
self, batch_size: int, global_cond: Tensor | None = None, generator: torch.Generator | None = None
) -> Tensor:
device = get_device_from_parameters(self)
dtype = get_dtype_from_parameters(self)
# Sample prior.
sample = torch.randn(
size=(batch_size, self.config.horizon, self.config.action_feature.shape[0]),
dtype=dtype,
device=device,
generator=generator,
)
self.noise_scheduler.set_timesteps(self.num_inference_steps)
for t in self.noise_scheduler.timesteps:
# Predict model output.
model_output = self.unet(
sample,
torch.full(sample.shape[:1], t, dtype=torch.long, device=sample.device),
global_cond=global_cond,
)
# Compute previous image: x_t -> x_t-1
sample = self.noise_scheduler.step(model_output, t, sample, generator=generator).prev_sample
return sample
def _prepare_global_conditioning(self, batch: dict[str, Tensor]) -> Tensor:
"""Encode image features and concatenate them all together along with the state vector."""
batch_size, n_obs_steps = batch[OBS_ROBOT].shape[:2]
global_cond_feats = [batch[OBS_ROBOT]]
# Extract image features.
if self.config.image_features:
if self.config.use_separate_rgb_encoder_per_camera:
# Combine batch and sequence dims while rearranging to make the camera index dimension first.
images_per_camera = einops.rearrange(batch["observation.images"], "b s n ... -> n (b s) ...")
img_features_list = torch.cat(
[
encoder(images)
for encoder, images in zip(self.rgb_encoder, images_per_camera, strict=True)
]
)
# Separate batch and sequence dims back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features_list, "(n b s) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
else:
# Combine batch, sequence, and "which camera" dims before passing to shared encoder.
img_features = self.rgb_encoder(
einops.rearrange(batch["observation.images"], "b s n ... -> (b s n) ...")
)
# Separate batch dim and sequence dim back out. The camera index dim gets absorbed into the
# feature dim (effectively concatenating the camera features).
img_features = einops.rearrange(
img_features, "(b s n) ... -> b s (n ...)", b=batch_size, s=n_obs_steps
)
global_cond_feats.append(img_features)
if self.config.env_state_feature:
global_cond_feats.append(batch[OBS_ENV])
# Concatenate features then flatten to (B, global_cond_dim).
return torch.cat(global_cond_feats, dim=-1).flatten(start_dim=1)
def generate_actions(self, batch: dict[str, Tensor]) -> Tensor:
"""
This function expects `batch` to have:
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
AND/OR
"observation.environment_state": (B, environment_dim)
}
"""
batch_size, n_obs_steps = batch["observation.state"].shape[:2]
assert n_obs_steps == self.config.n_obs_steps
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# run sampling
actions = self.conditional_sample(batch_size, global_cond=global_cond)
# Extract `n_action_steps` steps worth of actions (from the current observation).
start = n_obs_steps - 1
end = start + self.config.n_action_steps
actions = actions[:, start:end]
return actions
def compute_loss(self, batch: dict[str, Tensor]) -> Tensor:
"""
This function expects `batch` to have (at least):
{
"observation.state": (B, n_obs_steps, state_dim)
"observation.images": (B, n_obs_steps, num_cameras, C, H, W)
AND/OR
"observation.environment_state": (B, environment_dim)
"action": (B, horizon, action_dim)
"action_is_pad": (B, horizon)
}
"""
# Input validation.
assert set(batch).issuperset({"observation.state", "action", "action_is_pad"})
assert "observation.images" in batch or "observation.environment_state" in batch
n_obs_steps = batch["observation.state"].shape[1]
horizon = batch["action"].shape[1]
assert horizon == self.config.horizon
assert n_obs_steps == self.config.n_obs_steps
# Encode image features and concatenate them all together along with the state vector.
global_cond = self._prepare_global_conditioning(batch) # (B, global_cond_dim)
# Forward diffusion.
trajectory = batch["action"]
# Sample noise to add to the trajectory.
eps = torch.randn(trajectory.shape, device=trajectory.device)
# Sample a random noising timestep for each item in the batch.
timesteps = torch.randint(
low=0,
high=self.noise_scheduler.config.num_train_timesteps,
size=(trajectory.shape[0],),
device=trajectory.device,
).long()
# Add noise to the clean trajectories according to the noise magnitude at each timestep.
noisy_trajectory = self.noise_scheduler.add_noise(trajectory, eps, timesteps)
# Run the denoising network (that might denoise the trajectory, or attempt to predict the noise).
pred = self.unet(noisy_trajectory, timesteps, global_cond=global_cond)
# Compute the loss.
# The target is either the original trajectory, or the noise.
if self.config.prediction_type == "epsilon":
target = eps
elif self.config.prediction_type == "sample":
target = batch["action"]
else:
raise ValueError(f"Unsupported prediction type {self.config.prediction_type}")
loss = F.mse_loss(pred, target, reduction="none")
# Mask loss wherever the action is padded with copies (edges of the dataset trajectory).
if self.config.do_mask_loss_for_padding:
if "action_is_pad" not in batch:
raise ValueError(
"You need to provide 'action_is_pad' in the batch when "
f"{self.config.do_mask_loss_for_padding=}."
)
in_episode_bound = ~batch["action_is_pad"]
loss = loss * in_episode_bound.unsqueeze(-1)
return loss.mean()
class SpatialSoftmax(nn.Module):
"""
Spatial Soft Argmax operation described in "Deep Spatial Autoencoders for Visuomotor Learning" by Finn et al.
(https://arxiv.org/pdf/1509.06113). A minimal port of the robomimic implementation.
At a high level, this takes 2D feature maps (from a convnet/ViT) and returns the "center of mass"
of activations of each channel, i.e., keypoints in the image space for the policy to focus on.
Example: take feature maps of size (512x10x12). We generate a grid of normalized coordinates (10x12x2):
-----------------------------------------------------
| (-1., -1.) | (-0.82, -1.) | ... | (1., -1.) |
| (-1., -0.78) | (-0.82, -0.78) | ... | (1., -0.78) |
| ... | ... | ... | ... |
| (-1., 1.) | (-0.82, 1.) | ... | (1., 1.) |
-----------------------------------------------------
This is achieved by applying channel-wise softmax over the activations (512x120) and computing the dot
product with the coordinates (120x2) to get expected points of maximal activation (512x2).
The example above results in 512 keypoints (corresponding to the 512 input channels). We can optionally
provide num_kp != None to control the number of keypoints. This is achieved by a first applying a learnable
linear mapping (in_channels, H, W) -> (num_kp, H, W).
"""
def __init__(self, input_shape, num_kp=None):
"""
Args:
input_shape (list): (C, H, W) input feature map shape.
num_kp (int): number of keypoints in output. If None, output will have the same number of channels as input.
"""
super().__init__()
assert len(input_shape) == 3
self._in_c, self._in_h, self._in_w = input_shape
if num_kp is not None:
self.nets = torch.nn.Conv2d(self._in_c, num_kp, kernel_size=1)
self._out_c = num_kp
else:
self.nets = None
self._out_c = self._in_c
# we could use torch.linspace directly but that seems to behave slightly differently than numpy
# and causes a small degradation in pc_success of pre-trained models.
pos_x, pos_y = np.meshgrid(np.linspace(-1.0, 1.0, self._in_w), np.linspace(-1.0, 1.0, self._in_h))
pos_x = torch.from_numpy(pos_x.reshape(self._in_h * self._in_w, 1)).float()
pos_y = torch.from_numpy(pos_y.reshape(self._in_h * self._in_w, 1)).float()
# register as buffer so it's moved to the correct device.
self.register_buffer("pos_grid", torch.cat([pos_x, pos_y], dim=1))
def forward(self, features: Tensor) -> Tensor:
"""
Args:
features: (B, C, H, W) input feature maps.
Returns:
(B, K, 2) image-space coordinates of keypoints.
"""
if self.nets is not None:
features = self.nets(features)
# [B, K, H, W] -> [B * K, H * W] where K is number of keypoints
features = features.reshape(-1, self._in_h * self._in_w)
# 2d softmax normalization
attention = F.softmax(features, dim=-1)
# [B * K, H * W] x [H * W, 2] -> [B * K, 2] for spatial coordinate mean in x and y dimensions
expected_xy = attention @ self.pos_grid
# reshape to [B, K, 2]
feature_keypoints = expected_xy.view(-1, self._out_c, 2)
return feature_keypoints
class DiffusionRgbEncoder(nn.Module):
"""Encodes an RGB image into a 1D feature vector.
Includes the ability to normalize and crop the image first.
"""
def __init__(self, config: DiffusionConfig):
super().__init__()
# Set up optional preprocessing.
if config.crop_shape is not None:
self.do_crop = True
# Always use center crop for eval
self.center_crop = torchvision.transforms.CenterCrop(config.crop_shape)
if config.crop_is_random:
self.maybe_random_crop = torchvision.transforms.RandomCrop(config.crop_shape)
else:
self.maybe_random_crop = self.center_crop
else:
self.do_crop = False
# Set up backbone.
backbone_model = getattr(torchvision.models, config.vision_backbone)(
weights=config.pretrained_backbone_weights
)
# Note: This assumes that the layer4 feature map is children()[-3]
# TODO(alexander-soare): Use a safer alternative.
self.backbone = nn.Sequential(*(list(backbone_model.children())[:-2]))
if config.use_group_norm:
if config.pretrained_backbone_weights:
raise ValueError(
"You can't replace BatchNorm in a pretrained model without ruining the weights!"
)
self.backbone = _replace_submodules(
root_module=self.backbone,
predicate=lambda x: isinstance(x, nn.BatchNorm2d),
func=lambda x: nn.GroupNorm(num_groups=x.num_features // 16, num_channels=x.num_features),
)
# Set up pooling and final layers.
# Use a dry run to get the feature map shape.
# The dummy input should take the number of image channels from `config.image_features` and it should
# use the height and width from `config.crop_shape` if it is provided, otherwise it should use the
# height and width from `config.image_features`.
# Note: we have a check in the config class to make sure all images have the same shape.
images_shape = next(iter(config.image_features.values())).shape
dummy_shape_h_w = config.crop_shape if config.crop_shape is not None else images_shape[1:]
dummy_shape = (1, images_shape[0], *dummy_shape_h_w)
feature_map_shape = get_output_shape(self.backbone, dummy_shape)[1:]
self.pool = SpatialSoftmax(feature_map_shape, num_kp=config.spatial_softmax_num_keypoints)
self.feature_dim = config.spatial_softmax_num_keypoints * 2
self.out = nn.Linear(config.spatial_softmax_num_keypoints * 2, self.feature_dim)
self.relu = nn.ReLU()
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: (B, C, H, W) image tensor with pixel values in [0, 1].
Returns:
(B, D) image feature.
"""
# Preprocess: maybe crop (if it was set up in the __init__).
if self.do_crop:
if self.training: # noqa: SIM108
x = self.maybe_random_crop(x)
else:
# Always use center crop for eval.
x = self.center_crop(x)
# Extract backbone feature.
x = torch.flatten(self.pool(self.backbone(x)), start_dim=1)
# Final linear layer with non-linearity.
x = self.relu(self.out(x))
return x
def _replace_submodules(
root_module: nn.Module, predicate: Callable[[nn.Module], bool], func: Callable[[nn.Module], nn.Module]
) -> nn.Module:
"""
Args:
root_module: The module for which the submodules need to be replaced
predicate: Takes a module as an argument and must return True if the that module is to be replaced.
func: Takes a module as an argument and returns a new module to replace it with.
Returns:
The root module with its submodules replaced.
"""
if predicate(root_module):
return func(root_module)
replace_list = [k.split(".") for k, m in root_module.named_modules(remove_duplicate=True) if predicate(m)]
for *parents, k in replace_list:
parent_module = root_module
if len(parents) > 0:
parent_module = root_module.get_submodule(".".join(parents))
if isinstance(parent_module, nn.Sequential):
src_module = parent_module[int(k)]
else:
src_module = getattr(parent_module, k)
tgt_module = func(src_module)
if isinstance(parent_module, nn.Sequential):
parent_module[int(k)] = tgt_module
else:
setattr(parent_module, k, tgt_module)
# verify that all BN are replaced
assert not any(predicate(m) for _, m in root_module.named_modules(remove_duplicate=True))
return root_module
class DiffusionSinusoidalPosEmb(nn.Module):
"""1D sinusoidal positional embeddings as in Attention is All You Need."""
def __init__(self, dim: int):
super().__init__()
self.dim = dim
def forward(self, x: Tensor) -> Tensor:
device = x.device
half_dim = self.dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
emb = x.unsqueeze(-1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class DiffusionConv1dBlock(nn.Module):
"""Conv1d --> GroupNorm --> Mish"""
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
super().__init__()
self.block = nn.Sequential(
nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2),
nn.GroupNorm(n_groups, out_channels),
nn.Mish(),
)
def forward(self, x):
return self.block(x)
class DiffusionConditionalUnet1d(nn.Module):
"""A 1D convolutional UNet with FiLM modulation for conditioning.
Note: this removes local conditioning as compared to the original diffusion policy code.
"""
def __init__(self, config: DiffusionConfig, global_cond_dim: int):
super().__init__()
self.config = config
# Encoder for the diffusion timestep.
self.diffusion_step_encoder = nn.Sequential(
DiffusionSinusoidalPosEmb(config.diffusion_step_embed_dim),
nn.Linear(config.diffusion_step_embed_dim, config.diffusion_step_embed_dim * 4),
nn.Mish(),
nn.Linear(config.diffusion_step_embed_dim * 4, config.diffusion_step_embed_dim),
)
# The FiLM conditioning dimension.
cond_dim = config.diffusion_step_embed_dim + global_cond_dim
# In channels / out channels for each downsampling block in the Unet's encoder. For the decoder, we
# just reverse these.
in_out = [(config.action_feature.shape[0], config.down_dims[0])] + list(
zip(config.down_dims[:-1], config.down_dims[1:], strict=True)
)
# Unet encoder.
common_res_block_kwargs = {
"cond_dim": cond_dim,
"kernel_size": config.kernel_size,
"n_groups": config.n_groups,
"use_film_scale_modulation": config.use_film_scale_modulation,
}
self.down_modules = nn.ModuleList([])
for ind, (dim_in, dim_out) in enumerate(in_out):
is_last = ind >= (len(in_out) - 1)
self.down_modules.append(
nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(dim_in, dim_out, **common_res_block_kwargs),
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
# Downsample as long as it is not the last block.
nn.Conv1d(dim_out, dim_out, 3, 2, 1) if not is_last else nn.Identity(),
]
)
)
# Processing in the middle of the auto-encoder.
self.mid_modules = nn.ModuleList(
[
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
DiffusionConditionalResidualBlock1d(
config.down_dims[-1], config.down_dims[-1], **common_res_block_kwargs
),
]
)
# Unet decoder.
self.up_modules = nn.ModuleList([])
for ind, (dim_out, dim_in) in enumerate(reversed(in_out[1:])):
is_last = ind >= (len(in_out) - 1)
self.up_modules.append(
nn.ModuleList(
[
# dim_in * 2, because it takes the encoder's skip connection as well
DiffusionConditionalResidualBlock1d(dim_in * 2, dim_out, **common_res_block_kwargs),
DiffusionConditionalResidualBlock1d(dim_out, dim_out, **common_res_block_kwargs),
# Upsample as long as it is not the last block.
nn.ConvTranspose1d(dim_out, dim_out, 4, 2, 1) if not is_last else nn.Identity(),
]
)
)
self.final_conv = nn.Sequential(
DiffusionConv1dBlock(config.down_dims[0], config.down_dims[0], kernel_size=config.kernel_size),
nn.Conv1d(config.down_dims[0], config.action_feature.shape[0], 1),
)
def forward(self, x: Tensor, timestep: Tensor | int, global_cond=None) -> Tensor:
"""
Args:
x: (B, T, input_dim) tensor for input to the Unet.
timestep: (B,) tensor of (timestep_we_are_denoising_from - 1).
global_cond: (B, global_cond_dim)
output: (B, T, input_dim)
Returns:
(B, T, input_dim) diffusion model prediction.
"""
# For 1D convolutions we'll need feature dimension first.
x = einops.rearrange(x, "b t d -> b d t")
timesteps_embed = self.diffusion_step_encoder(timestep)
# If there is a global conditioning feature, concatenate it to the timestep embedding.
if global_cond is not None:
global_feature = torch.cat([timesteps_embed, global_cond], axis=-1)
else:
global_feature = timesteps_embed
# Run encoder, keeping track of skip features to pass to the decoder.
encoder_skip_features: list[Tensor] = []
for resnet, resnet2, downsample in self.down_modules:
x = resnet(x, global_feature)
x = resnet2(x, global_feature)
encoder_skip_features.append(x)
x = downsample(x)
for mid_module in self.mid_modules:
x = mid_module(x, global_feature)
# Run decoder, using the skip features from the encoder.
for resnet, resnet2, upsample in self.up_modules:
x = torch.cat((x, encoder_skip_features.pop()), dim=1)
x = resnet(x, global_feature)
x = resnet2(x, global_feature)
x = upsample(x)
x = self.final_conv(x)
x = einops.rearrange(x, "b d t -> b t d")
return x
class DiffusionConditionalResidualBlock1d(nn.Module):
"""ResNet style 1D convolutional block with FiLM modulation for conditioning."""
def __init__(
self,
in_channels: int,
out_channels: int,
cond_dim: int,
kernel_size: int = 3,
n_groups: int = 8,
# Set to True to do scale modulation with FiLM as well as bias modulation (defaults to False meaning
# FiLM just modulates bias).
use_film_scale_modulation: bool = False,
):
super().__init__()
self.use_film_scale_modulation = use_film_scale_modulation
self.out_channels = out_channels
self.conv1 = DiffusionConv1dBlock(in_channels, out_channels, kernel_size, n_groups=n_groups)
# FiLM modulation (https://arxiv.org/abs/1709.07871) outputs per-channel bias and (maybe) scale.
cond_channels = out_channels * 2 if use_film_scale_modulation else out_channels
self.cond_encoder = nn.Sequential(nn.Mish(), nn.Linear(cond_dim, cond_channels))
self.conv2 = DiffusionConv1dBlock(out_channels, out_channels, kernel_size, n_groups=n_groups)
# A final convolution for dimension matching the residual (if needed).
self.residual_conv = (
nn.Conv1d(in_channels, out_channels, 1) if in_channels != out_channels else nn.Identity()
)
def forward(self, x: Tensor, cond: Tensor) -> Tensor:
"""
Args:
x: (B, in_channels, T)
cond: (B, cond_dim)
Returns:
(B, out_channels, T)
"""
out = self.conv1(x)
# Get condition embedding. Unsqueeze for broadcasting to `out`, resulting in (B, out_channels, 1).
cond_embed = self.cond_encoder(cond).unsqueeze(-1)
if self.use_film_scale_modulation:
# Treat the embedding as a list of scales and biases.
scale = cond_embed[:, : self.out_channels]
bias = cond_embed[:, self.out_channels :]
out = scale * out + bias
else:
# Treat the embedding as biases.
out = out + cond_embed
out = self.conv2(out)
out = out + self.residual_conv(x)
return out