-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathnpy4th.cpp
218 lines (170 loc) · 6.33 KB
/
npy4th.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//Copyright (C) 2015 Hani Altwaijry
//Released under MIT License
//license available in LICENSE file
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cnpy.h>
#include <stdint.h>
#include <TH.h>
#include <luaT.h>
static void load_array_to_lua(lua_State *L, cnpy::NpyArray& arr){
int ndims = arr.shape.size();
//based on code from mattorch with stride fix
int k;
THLongStorage *size = THLongStorage_newWithSize(ndims);
THLongStorage *stride = THLongStorage_newWithSize(ndims);
for (k=0; k<ndims; k++) {
THLongStorage_set(size, k, arr.shape[k]);
if (k > 0)
THLongStorage_set(stride, ndims-k-1, arr.shape[ndims-k]*THLongStorage_get(stride,ndims-k));
else
THLongStorage_set(stride, ndims-k-1, 1);
}
void * tensorDataPtr = NULL;
size_t numBytes = 0;
if ( arr.arrayType == 'f' ){ // float32/64
if ( arr.word_size == 4 ){ //float32
THFloatTensor *tensor = THFloatTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THFloatTensor_data(tensor));
numBytes = THFloatTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.FloatTensor"));
}else if ( arr.word_size == 8){ //float 64
THDoubleTensor *tensor = THDoubleTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THDoubleTensor_data(tensor));
numBytes = THDoubleTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.DoubleTensor"));
}
}else if ( arr.arrayType == 'i' || arr.arrayType == 'u' ){ // does torch have unsigned types .. need to look
if ( arr.word_size == 1 ){ //int8
THByteTensor *tensor = THByteTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THByteTensor_data(tensor));
numBytes = THByteTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.ByteTensor"));
}else if ( arr.word_size == 2 ){ //int16
THShortTensor *tensor = THShortTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THShortTensor_data(tensor));
numBytes = THShortTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.ShortTensor"));
}else if ( arr.word_size == 4 ){ //int32
THIntTensor *tensor = THIntTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THIntTensor_data(tensor));
numBytes = THIntTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.IntTensor"));
}else if ( arr.word_size == 8){ //long 64
THLongTensor *tensor = THLongTensor_newWithSize(size, stride);
tensorDataPtr = (void *)(THLongTensor_data(tensor));
numBytes = THLongTensor_nElement(tensor) * arr.word_size;
luaT_pushudata(L, tensor, luaT_checktypename2id(L, "torch.LongTensor"));
}
}else{
printf("array type unsupported");
throw std::runtime_error("unsupported data type");
}
// now copy the data
assert(tensorDataPtr);
memcpy(tensorDataPtr, (void *)(arr.data<void>()), numBytes);
}
static int loadnpy_l(lua_State *L) {
try{
const char *filename = lua_tostring(L, 1);
std::string fpath = std::string(filename);
cnpy::NpyArray arr = cnpy::npy_load(fpath);
load_array_to_lua(L, arr);
} catch (std::exception& e){
THError(e.what());
}
return 1;
}
static int loadnpz_l(lua_State *L){
try{
const char *filename = lua_tostring(L, 1);
std::string fpath = std::string(filename);
cnpy::npz_t npzData = cnpy::npz_load(filename);
// create a new table
lua_newtable(L);
int tbl = lua_gettop(L);
for (cnpy::npz_t::iterator i=npzData.begin(); i!=npzData.end(); ++i){
std::string name = i->first;
cnpy::NpyArray arr = i->second;
lua_pushstring(L, name.c_str());
load_array_to_lua(L, arr);
lua_rawset(L, tbl);
}
}catch (std::exception& e){
THError(e.what());
}
return 1;
}
static std::vector<size_t> get_shape(int nDimension, long* size){
std::vector<size_t> shape(nDimension);
for (int k=0; k< nDimension; k++){
shape[k] = (size_t) size[k];
}
return shape;
}
static int savenpy_l(lua_State *L){
try{
const char *filename = lua_tostring(L, 1);
std::string fpath = std::string(filename);
const char *inType = luaT_typename(L, 2);
int typeId = luaL_checkinteger(L, 3);
const char *mode = lua_tostring(L, 4);
bool success=false;
switch ( typeId ){
case 0: //double
{ THDoubleTensor * tensor = (THDoubleTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<double>(fpath, tensor->storage->data, shape, mode);
} break;
case 1: //float
{ THFloatTensor * tensor = (THFloatTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<float>(fpath, tensor->storage->data, shape, mode);
}
break;
case 2: //int
{ THIntTensor * tensor = (THIntTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<int>(fpath, tensor->storage->data, shape, mode);
}
break;
case 3: //byte
{ THByteTensor * tensor = (THByteTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<unsigned char>(fpath, tensor->storage->data, shape, mode);
}
break;
case 4: //long
{ THLongTensor * tensor = (THLongTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<long>(fpath, tensor->storage->data, shape, mode);
}
break;
case 5: //short
{ THShortTensor * tensor = (THShortTensor *) luaT_checkudata(L, 2, inType);
std::vector<size_t> shape = get_shape(tensor->nDimension, tensor->size);
success=cnpy::npy_save<short>(fpath, tensor->storage->data, shape, mode);
}
break;
default:
THError("unsupported tensor type :-(");
}
if (!success)
THError("error saving file. are you sure the path is ok?");
lua_pushboolean(L, success); // to return true
}catch (std::exception& e){
THError(e.what());
}
return 1;
}
static const struct luaL_reg npyth [] = {
{"loadnpy", loadnpy_l},
{"loadnpz", loadnpz_l},
{"savenpy", savenpy_l},
{NULL, NULL}
};
extern "C" int luaopen_libnpy4th (lua_State *L) {
luaL_openlib(L, "libnpy4th", npyth, 0);
return 1;
}