-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
129 lines (107 loc) · 3.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import json
import datetime
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from collections import defaultdict
from lcd.dataset import CrossTripletDataset
from lcd.models import *
from lcd.losses import *
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path to the json config file")
parser.add_argument("--logdir", help="path to the log directory")
args = parser.parse_args()
config = args.config
logdir = args.logdir
args = json.load(open(config))
if not os.path.exists(logdir):
os.mkdir(logdir)
fname = os.path.join(logdir, "config.json")
with open(fname, "w") as fp:
json.dump(args, fp, indent=4)
device = args["device"]
dataset = CrossTripletDataset(args["root"], split="train")
loader = data.DataLoader(
dataset,
batch_size=args["batch_size"],
num_workers=args["num_workers"],
pin_memory=True,
shuffle=True,
)
patchnet = PatchNetAutoencoder(args["embedding_size"], args["normalize"])
pointnet = PointNetAutoencoder(
args["embedding_size"],
args["input_channels"],
args["output_channels"],
args["normalize"],
)
patchnet.to(device)
pointnet.to(device)
parameters = list(patchnet.parameters()) + list(pointnet.parameters())
optimizer = optim.SGD(
parameters,
lr=args["learning_rate"],
momentum=args["momentum"],
weight_decay=args["weight_decay"],
)
criterion = {
"mse": MSELoss(),
"chamfer": ChamferLoss(args["output_channels"]),
"triplet": HardTripletLoss(args["margin"], args["hardest"]),
}
criterion["mse"].to(device)
criterion["chamfer"].to(device)
criterion["triplet"].to(device)
best_loss = np.Inf
for epoch in range(args["epochs"]):
start = datetime.datetime.now()
scalars = defaultdict(list)
for i, batch in enumerate(loader):
x = [x.to(device) for x in batch]
y0, z0 = pointnet(x[0])
y1, z1 = patchnet(x[1])
loss_r = 0
loss_d = 0
loss_r += args["alpha"] * criterion["mse"](x[1], y1)
loss_r += args["beta"] * criterion["chamfer"](x[0], y0)
loss_d += args["gamma"] * criterion["triplet"](z0, z1)
loss = loss_d + loss_r
optimizer.zero_grad()
loss.backward()
optimizer.step()
scalars["loss"].append(loss)
scalars["loss_d"].append(loss_d)
scalars["loss_r"].append(loss_r)
now = datetime.datetime.now()
log = "{} | Batch [{:04d}/{:04d}] | loss: {:.4f} |"
log = log.format(now.strftime("%c"), i, len(loader), loss.item())
print(log)
# Summary after each epoch
summary = {}
now = datetime.datetime.now()
duration = (now - start).total_seconds()
log = "> {} | Epoch [{:04d}/{:04d}] | duration: {:.1f}s |"
log = log.format(now.strftime("%c"), epoch, args["epochs"], duration)
for m, v in scalars.items():
summary[m] = torch.stack(v).mean()
log += " {}: {:.4f} |".format(m, summary[m].item())
fname = os.path.join(logdir, "checkpoint_{:04d}.pth".format(epoch))
print("> Saving model to {}...".format(fname))
model = {"pointnet": pointnet.state_dict(), "patchnet": patchnet.state_dict()}
torch.save(model, fname)
if summary["loss"] < best_loss:
best_loss = summary["loss"]
fname = os.path.join(logdir, "model.pth")
print("> Saving model to {}...".format(fname))
model = {"pointnet": pointnet.state_dict(), "patchnet": patchnet.state_dict()}
torch.save(model, fname)
log += " best: {:.4f} |".format(best_loss)
fname = os.path.join(logdir, "train.log")
with open(fname, "a") as fp:
fp.write(log + "\n")
print(log)
print("--------------------------------------------------------------------------")