|
| 1 | +import { VectorStore } from 'langchain/vectorstores/base' |
| 2 | +import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface' |
| 3 | +import { handleEscapeCharacters } from '../../../src' |
| 4 | +import { ScoreThresholdRetriever } from 'langchain/retrievers/score_threshold' |
| 5 | + |
| 6 | +class SimilarityThresholdRetriever_Retrievers implements INode { |
| 7 | + label: string |
| 8 | + name: string |
| 9 | + version: number |
| 10 | + description: string |
| 11 | + type: string |
| 12 | + icon: string |
| 13 | + category: string |
| 14 | + baseClasses: string[] |
| 15 | + inputs: INodeParams[] |
| 16 | + outputs: INodeOutputsValue[] |
| 17 | + |
| 18 | + constructor() { |
| 19 | + this.label = 'Similarity Score Threshold Retriever' |
| 20 | + this.name = 'similarityThresholdRetriever' |
| 21 | + this.version = 1.0 |
| 22 | + this.type = 'SimilarityThresholdRetriever' |
| 23 | + this.icon = 'similaritythreshold.svg' |
| 24 | + this.category = 'Retrievers' |
| 25 | + this.description = 'Return results based on the minimum similarity percentage' |
| 26 | + this.baseClasses = [this.type, 'BaseRetriever'] |
| 27 | + this.inputs = [ |
| 28 | + { |
| 29 | + label: 'Vector Store', |
| 30 | + name: 'vectorStore', |
| 31 | + type: 'VectorStore' |
| 32 | + }, |
| 33 | + { |
| 34 | + label: 'Minimum Similarity Score (%)', |
| 35 | + name: 'minSimilarityScore', |
| 36 | + description: 'Finds results with at least this similarity score', |
| 37 | + type: 'number', |
| 38 | + default: 80, |
| 39 | + step: 1 |
| 40 | + }, |
| 41 | + { |
| 42 | + label: 'Max K', |
| 43 | + name: 'maxK', |
| 44 | + description: `The maximum number of results to fetch`, |
| 45 | + type: 'number', |
| 46 | + default: 20, |
| 47 | + step: 1 |
| 48 | + }, |
| 49 | + { |
| 50 | + label: 'K Increment', |
| 51 | + name: 'kIncrement', |
| 52 | + description: `How much to increase K by each time. It'll fetch N results, then N + kIncrement, then N + kIncrement * 2, etc.`, |
| 53 | + type: 'number', |
| 54 | + default: 2, |
| 55 | + step: 1 |
| 56 | + } |
| 57 | + ] |
| 58 | + this.outputs = [ |
| 59 | + { |
| 60 | + label: 'Similarity Threshold Retriever', |
| 61 | + name: 'retriever', |
| 62 | + baseClasses: this.baseClasses |
| 63 | + }, |
| 64 | + { |
| 65 | + label: 'Document', |
| 66 | + name: 'document', |
| 67 | + baseClasses: ['Document'] |
| 68 | + }, |
| 69 | + { |
| 70 | + label: 'Text', |
| 71 | + name: 'text', |
| 72 | + baseClasses: ['string', 'json'] |
| 73 | + } |
| 74 | + ] |
| 75 | + } |
| 76 | + |
| 77 | + async init(nodeData: INodeData, input: string): Promise<any> { |
| 78 | + const vectorStore = nodeData.inputs?.vectorStore as VectorStore |
| 79 | + const minSimilarityScore = nodeData.inputs?.minSimilarityScore as number |
| 80 | + const maxK = nodeData.inputs?.maxK as string |
| 81 | + const kIncrement = nodeData.inputs?.kIncrement as string |
| 82 | + |
| 83 | + const output = nodeData.outputs?.output as string |
| 84 | + |
| 85 | + const retriever = ScoreThresholdRetriever.fromVectorStore(vectorStore, { |
| 86 | + minSimilarityScore: minSimilarityScore ? minSimilarityScore / 100 : 0.9, |
| 87 | + maxK: maxK ? parseInt(maxK, 10) : 100, |
| 88 | + kIncrement: kIncrement ? parseInt(kIncrement, 10) : 2 |
| 89 | + }) |
| 90 | + |
| 91 | + if (output === 'retriever') return retriever |
| 92 | + else if (output === 'document') return await retriever.getRelevantDocuments(input) |
| 93 | + else if (output === 'text') { |
| 94 | + let finaltext = '' |
| 95 | + |
| 96 | + const docs = await retriever.getRelevantDocuments(input) |
| 97 | + |
| 98 | + for (const doc of docs) finaltext += `${doc.pageContent}\n` |
| 99 | + |
| 100 | + return handleEscapeCharacters(finaltext, false) |
| 101 | + } |
| 102 | + |
| 103 | + return retriever |
| 104 | + } |
| 105 | +} |
| 106 | + |
| 107 | +module.exports = { nodeClass: SimilarityThresholdRetriever_Retrievers } |
0 commit comments