-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMP3NoiseEvalClass.py
578 lines (502 loc) · 34.6 KB
/
MP3NoiseEvalClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
import os
import re
import wave
import datetime
import numpy as np
import matplotlib.pyplot as plt
import soundfile as sf
import shutil
from scipy.io import wavfile
import NoiseEvalUtil as NEUtil
import NoiseEvalEffect as NoiseEvalEffect
#import IPython.display as ipd
#from pydub import AudioSegment
import librosa
import argparse
from audiomentations import Gain,Normalize,LoudnessNormalization,AddGaussianSNR,Limiter,ClippingDistortion
class MP3NoiseEvalClass:
def EraseTheMp3Mixing(self):
shutil.rmtree(self.Foldpath + "/Mixing_Result/")
shutil.rmtree(self.Foldpath + "/Mixing_Result_Mp3/")
shutil.rmtree(self.Foldpath + "/Mixing_Result_Mp3_Wav/")
def TestNoisedOnlyFile(self,file_Manipul_list, outputfilename):
GaussianNoiseValue = file_Manipul_list[0]
DistortionPercentValue = file_Manipul_list[1]
#IThresholdLevelValue =file_Manipul_list[2]
IIThresholdLevelValue =file_Manipul_list[2]
mixing_data = self.InitalData
mixing_sr = self.SampleRate
#mixing_data,mixing_sr = self.Dynamic_Transform_Single_FullPara(mixing_data, mixing_sr, IThresholdLevelValue)
mixing_data,mixing_sr = self.AddingGaussianNoise_Single(mixing_data, mixing_sr,GaussianNoiseValue)
#print("GuassianNoise is done")
## mixing_data,mixing_sr = self.AddingClippingDistortion_Single(mixing_data, mixing_sr,DistortionPercentValue)
##***********##make it more granular to the clipping percentage
mixing_data,mixing_sr = self.AddingClippingDistortionByFloater_Single(mixing_data, mixing_sr, DistortionPercentValue)
#print("ClippingNoise is done")
mixing_data,mixing_sr = self.Dynamic_Transform_Single_FullPara(mixing_data, mixing_sr, IIThresholdLevelValue)
mixing_data,mixing_sr = self.MixingSingleAudio(mixing_data,mixing_sr)
MixingFile = self.OutputMixingFile(mixing_data, mixing_sr, outputfilename)
return MixingFile
def TestNoisedOnlyFileModiGain(self,gainvalue,outputfilename):
mixing_data = self.InitalData
mixing_sr = self.SampleRate
Gain_Transform = Gain(min_gain_db=gainvalue,max_gain_db=gainvalue,p=1.0)
mixing_data = Gain_Transform(mixing_data, mixing_sr)
mixing_dB = NEUtil.calculate_rms_dB(mixing_data);
print(f"Total Loudness level of the audio is:{round(mixing_dB,2)}DB")
MixingFile = self.OutputMixingFile(mixing_data, mixing_sr, outputfilename)
return MixingFile
def TestNoisedOnlyFileOnlyDynamicLimi(self,file_Manipul_list, outputfilename):
thres_db = file_Manipul_list[0]
attac_time = file_Manipul_list[1]
reles_time =file_Manipul_list[2]
#mixing_data, mixing_sr= self.LoadSingleFile(inputfile,isMONO,self.StartingTime)
mixing_data = self.InitalData
mixing_sr = self.SampleRate
mixing_data,mixing_sr = self.Dynamic_Transform_Single_FullPara(mixing_data,mixing_sr,thres_db,attac_time,reles_time)
mixing_data,mixing_sr = self.MixingSingleAudio(mixing_data,mixing_sr)
MixingFile = self.OutputMixingFile(mixing_data, mixing_sr, outputfilename)
return MixingFile
def TestNoisedOnlyFileOnlyDynamicNativeLimi(self,file_Manipul_list, outputfilename):
thres_db = file_Manipul_list[0]
attac_time = file_Manipul_list[1]
reles_time =file_Manipul_list[2]
# mixing_data, mixing_sr= self.LoadSingleFile(inputfile,isMONO,self.StartingTime)
mixing_data = self.InitalData
mixing_sr = self.SampleRate
mixing_data,mixing_sr = self.Dynamic_Transform_Single_FullPara_BClimiter(mixing_data,mixing_sr,thres_db,attac_time,reles_time)
mixing_data,mixing_sr = self.MixingSingleAudio(mixing_data,mixing_sr)
MixingFile = self.OutputMixingFile(mixing_data, mixing_sr, outputfilename)
return MixingFile
def TestNoisedOnlyVocal(self,vocal_Manipul_list, filename):
GaussianNoiseValue = vocal_Manipul_list[0]
DistortionPercentValue = vocal_Manipul_list[1]
# IThresholdLevelValue =vocal_Manipul_list[2]
IIThresholdLevelValue =vocal_Manipul_list[2]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
###It is a fixed signal chain strating with the Limiter, with the next WhiteNoise and Distortion
# vocal_data,v_sr = self.Dynamic_Transform_Single_FullPara(vocal_data, v_sr, IThresholdLevelValue)
vocal_data,v_sr = self.AddingGaussianNoise_Single(vocal_data, v_sr,GaussianNoiseValue)
#print("GuassianNoise is done")
vocal_data,v_sr = self.AddingClippingDistortionByFloater_Single(vocal_data, v_sr,DistortionPercentValue)
#print("ClippingNoise is done")
vocal_data,v_sr = self.Dynamic_Transform_Single_FullPara(vocal_data, v_sr, IIThresholdLevelValue)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def TestNoisedOnlyDrum(self,drum_Manipul_list,filename):
GaussianNoiseValue = drum_Manipul_list[0]
DistortionPercentValue = drum_Manipul_list[1]
# IThresholdLevelValue =drum_Manipul_list[2]
IIThresholdLevelValue =drum_Manipul_list[2]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
# drum_data,v_sr = self.Dynamic_Transform_Single_FullPara(drum_data, v_sr, IThresholdLevelValue)
drum_data,v_sr = self.AddingGaussianNoise_Single(drum_data, v_sr, GaussianNoiseValue)
#print("GuassianNoise is done")
drum_data,v_sr = self.AddingClippingDistortionByFloater_Single(drum_data, v_sr, DistortionPercentValue)
#print("ClippingNoise is done")
drum_data,v_sr = self.Dynamic_Transform_Single_FullPara(drum_data, v_sr, IIThresholdLevelValue)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def TestNoisedOnlyBass(self,bass_Manipul_list,filename):
GaussianNoiseValue = bass_Manipul_list[0]
DistortionPercentValue = bass_Manipul_list[1]
# IThresholdLevelValue =bass_Manipul_list[2]
IIThresholdLevelValue =bass_Manipul_list[2]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
# bass_data,v_sr = self.Dynamic_Transform_Single_FullPara(bass_data, v_sr, IThresholdLevelValue)
bass_data,v_sr = self.AddingGaussianNoise_Single(bass_data, v_sr, GaussianNoiseValue)
#print("GuassianNoise is done")
bass_data,v_sr = self.AddingClippingDistortionByFloater_Single(bass_data, v_sr, DistortionPercentValue)
#print("ClippingNoise is done")
bass_data,v_sr = self.Dynamic_Transform_Single_FullPara(bass_data, v_sr, IIThresholdLevelValue)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def TestNoisedOnlyOther(self,other_Manipul_list,filename):
GaussianNoiseValue = other_Manipul_list[0]
DistortionPercentValue = other_Manipul_list[1]
# IThresholdLevelValue = other_Manipul_list[2]
IIThresholdLevelValue =other_Manipul_list[2]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
# other_data,v_sr = self.Dynamic_Transform_Single_FullPara(other_data, v_sr, IThresholdLevelValue)
#print("DynamicChange is done")
other_data,v_sr = self.AddingGaussianNoise_Single(other_data, v_sr,GaussianNoiseValue)
#print("GuassianNoise is done")
other_data,v_sr = self.AddingClippingDistortionByFloater_Single(other_data, v_sr,DistortionPercentValue)
#print("ClippingNoise is done")
other_data,v_sr = self.Dynamic_Transform_Single_FullPara(other_data, v_sr, IIThresholdLevelValue)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def TestOnlyWhiteNoisedAll(self,Manipul_list,filename):
GaussianNoiseList = [Manipul_list[0],Manipul_list[1],Manipul_list[2],Manipul_list[3]]
#DistortionPercentList = [0,0,0,other_Manipul_list[1]]
#ThresholdLevelList =[0.0,0.0,0.0,other_Manipul_list[2]]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingGaussianNoise(vocal_data, drum_data, bass_data, other_data, v_sr,GaussianNoiseList)
#print("GuassianNoise is done")
#vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingClippingDistortion(vocal_data, drum_data, bass_data, other_data, v_sr,DistortionPercentList)
#print("ClippingNoise is done")
#vocal_data,drum_data,bass_data,other_data,v_sr = self.Dynamic_Transform(vocal_data, drum_data, bass_data, other_data, v_sr, ThresholdLevelList)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def TestOnlyClipNoiseAll(self,Manipul_list,filename):
#GaussianNoiseList = [Manipul_list[0],Manipul_list[1],Manipul_list[2],Manipul_list[3]]
DistortionPercentList = [Manipul_list[0],Manipul_list[1],Manipul_list[2],Manipul_list[3]]
#ThresholdLevelList =[0.0,0.0,0.0,other_Manipul_list[2]]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
#vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingGaussianNoise(vocal_data, drum_data, bass_data, other_data, v_sr,GaussianNoiseList)
#print("GuassianNoise is done")
vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingClippingDistortion(vocal_data, drum_data, bass_data, other_data, v_sr,DistortionPercentList)
#print("ClippingNoise is done")
#vocal_data,drum_data,bass_data,other_data,v_sr = self.Dynamic_Transform(vocal_data, drum_data, bass_data, other_data, v_sr, ThresholdLevelList)
#print("DynamicChange is done")
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
#the Function change all the parameters
# the Strture of the Manipulation Matrix[vocal_gaussian, vocal_dis, vocal_limiter_1,vocal_limiter_2
# drum_gaussian, drum_dis, drum_limiter_1, drum_limiter_2 ,bass_gaussian, bass_dis, bass_limiter_1,bass_limiter_2,
# other_gaussian, other_dis, other_limiter_1,other_limiter_2]
def TestNoisedFullTrack(self,full_Manipul_list,filename,isNormalised=True):
GaussianNoiseList = [full_Manipul_list[0],full_Manipul_list[3],full_Manipul_list[6],full_Manipul_list[9]]
DistortionPercentList = [full_Manipul_list[1],full_Manipul_list[4],full_Manipul_list[7],full_Manipul_list[10]]
# IThresholdLevelList =[full_Manipul_list[2],full_Manipul_list[6],full_Manipul_list[10],full_Manipul_list[14]]
IIThresholdLevelList = [full_Manipul_list[2],full_Manipul_list[5],full_Manipul_list[8],full_Manipul_list[11]]
vocal_data = self.Inital_V_Data
drum_data = self.Inital_D_Data
bass_data = self.Inital_B_Data
other_data = self.Inital_O_Data
v_sr = self.SampleRate
# vocal_data,drum_data,bass_data,other_data,v_sr = self.Dynamic_Transform(vocal_data, drum_data, bass_data, other_data, v_sr, IThresholdLevelList)
#print("DynamicChange is done")
vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingGaussianNoise(vocal_data, drum_data, bass_data, other_data, v_sr,GaussianNoiseList)
#print("GuassianNoise is done")
vocal_data,drum_data,bass_data,other_data,v_sr = self.AddingClippingDistortionWithFlatoing(vocal_data, drum_data, bass_data, other_data,v_sr,DistortionPercentList)
#print("ClippingNoise is done")
vocal_data,drum_data,bass_data,other_data,v_sr = self.Dynamic_Transform_FullPara(vocal_data, drum_data, bass_data, other_data, v_sr, IIThresholdLevelList)
#print("DynamicChange is done")
#mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr)
mixing_data,srate = self.MixingAudio(vocal_data, drum_data, bass_data, other_data, v_sr, isNormalised)
MixingFile = self.OutputMixingFile(mixing_data, srate, filename)
# Sccore = self.MeasureOutputs(MixingFile, 96)
return MixingFile
def LoadSingleFile(self, filename, foldpath,isMONO, StartingTime):
mixing_data, mixing_sr= librosa.load(foldpath+"/"+filename,sr=None,mono=False)
mixing_data_duration = librosa.get_duration(y=mixing_data, sr=mixing_sr)
if isMONO == True:
mixing_data = librosa.to_mono(mixing_data)
if mixing_data_duration > 8:
# Combine the stereo channels
#mixing_data = np.vstack([mixing_data[0, StartingTime* mixing_sr+self.StartingTime:int((8+StartingTime) * mixing_sr)], mixing_data[1, self.StartingTime* mixing_sr+self.StartingTime:int((8+self.StartingTime) * mixing_sr)]])
mixing_data = np.vstack([mixing_data[StartingTime* mixing_sr+self.StartingTime:int((8+StartingTime) * mixing_sr)]])
print(f"Audio duration orginal is {mixing_data_duration} seconds, now is the {librosa.get_duration(y=mixing_data,sr=mixing_sr)}, the audio changing to the MONO")
#shrink the file to the 8s
else:
# print(f"Vocal duration orginal is {mixing_data_duration} seconds, now is the {librosa.get_duration(y=mixing_data,sr=mixing_sr)}, the audio keep the Stereo")
None
return mixing_data,mixing_sr
##fold path will define the fold to load the data file
##isMONO is not related to the Load File and output to the File Format
##from which seconds starting to cut out
def LoadTrack(self,foldpath, isMONO, StartingTime):
##Load the file path "\\"is for windows os, "/" is for Ubuntu
VocalWav = foldpath + "/vocals.wav"
DrumsWav = foldpath + "/drums.wav"
BassWav = foldpath + "/bass.wav"
OtherWav = foldpath + "/other.wav"
##Load the audio data
vocal_data, v_sr= librosa.load(VocalWav,sr=None,mono=False)
drum_data, d_sr = librosa.load(DrumsWav,sr=None,mono=False)
bass_data, b_sr = librosa.load(BassWav,sr=None,mono=False)
other_data, o_sr = librosa.load(OtherWav,sr=None,mono=False)
vocal_duration = librosa.get_duration(y=vocal_data, sr=v_sr)
if isMONO == True:
vocal_data = librosa.to_mono(vocal_data)
if vocal_duration > 8:
# Combine the stereo channels
#vocal_data = np.vstack([vocal_data[0, StartingTime* v_sr:int((8+StartingTime) * v_sr)], vocal_data[1, StartingTime* v_sr:int((8+StartingTime) * v_sr)]])
#([mixing_data[StartingTime* mixing_sr+self.StartingTime:int((8+StartingTime) * mixing_sr)]])
vocal_data = np.vstack([vocal_data[StartingTime* v_sr:int((8+StartingTime) * v_sr)]])
print(f"Vocal duration orginal is {vocal_duration} seconds, now is the {librosa.get_duration(y=vocal_data,sr=v_sr)}, the audio changing to the MONO")
#shrink the file to the 8s
else:
print(f"Vocal duration orginal is {vocal_duration} seconds, now is the {librosa.get_duration(y=vocal_data,sr=v_sr)}, the audio keep the Stereo")
drum_duration = librosa.get_duration(y=drum_data, sr=d_sr)
if isMONO == True:
drum_data = librosa.to_mono(drum_data)
if drum_duration > 8:
drum_data = np.vstack([drum_data[StartingTime* d_sr:int((8+StartingTime) * d_sr)]])
print(f"Drum duration orginal is {drum_duration} seconds, now is the {librosa.get_duration(y=drum_data,sr=d_sr)}, the audio changing to the MONO")
#shrink the file to the 8s
else:
print(f"Drum duration orginal is {drum_duration} seconds, now is the {librosa.get_duration(y=drum_data,sr=d_sr)}, the audio keep the Stereo")
bass_duration = librosa.get_duration(y=bass_data, sr=b_sr)
if isMONO == True:
bass_data = librosa.to_mono(bass_data)
if bass_duration > 8:
bass_data = np.vstack([bass_data[StartingTime* b_sr:int((8+StartingTime) * b_sr)]])
print(f"Bass duration orginal is {bass_duration} seconds, now is the {librosa.get_duration(y=bass_data,sr=b_sr)}, the audio changing to the MONO")
#shrink the file to the 8s
else:
print(f"Bass duration orginal is {bass_duration} seconds, now is the {librosa.get_duration(y=bass_data,sr=b_sr)}, the audio keep the Stereo")
other_duration = librosa.get_duration(y=other_data, sr=o_sr)
if isMONO == True:
other_data = librosa.to_mono(other_data)
if other_duration > 8:
other_data = np.vstack([other_data[StartingTime*o_sr:int((8+StartingTime) * o_sr)]])
print(f"Other duration orginal is {other_duration} seconds, now is the {librosa.get_duration(y=other_data,sr=o_sr)}, the audio changing to the MONO")
#shrink the file to the 8s
else:
print(f"Other duration orginal is {other_duration} seconds, now is the {librosa.get_duration(y=other_data,sr=o_sr)}, the audio keep the Stereo")
if v_sr == d_sr == b_sr == o_sr:
return vocal_data,drum_data,bass_data,other_data,v_sr
else:
print("The Audio is not in the same samplerate, Nothing can do.")
return None,None,None,None,0
## the funtion that produce the mixing output data
def MixingAudio(self,vocal_data, drum_data, bass_data, other_data, srate, isNormalised=True):
#Normalize the data
###Important HERE when turn to false, be noticing do not to use to regenerating the audio
#The swith to decide whether its necessary to use the Normalization
if isNormalised == True:
Normalize_Transform = Normalize(p=1.0)
vocal_data = Normalize_Transform(vocal_data, srate)
drum_data = Normalize_Transform(drum_data, srate)
bass_data = Normalize_Transform(bass_data, srate)
other_data = Normalize_Transform(other_data, srate)
#adding 3db gain in the vocal
Gain_Transform = Gain(min_gain_db=3,max_gain_db=3,p=1.0)
vocal_data = Gain_Transform(vocal_data, srate)
mixing_data = vocal_data+drum_data+bass_data+other_data
self.InitalData = mixing_data
##pre-mixing output
wavfile.write("premixing.wav", srate, mixing_data.transpose())
#Lufs align to -14 in the end,in case it been compressed when it to low to reach the mask level
Lufs_Transform = LoudnessNormalization(min_lufs=-14.0,max_lufs=-14.0,p=1.0)
mixing_data = Lufs_Transform(mixing_data, srate)
return mixing_data,srate
def MixingSingleAudio(self,mixing_data,mixing_sr):
#Normalize_Transform = Normalize(p=1.0)
#mixing_data = Normalize_Transform(mixing_data, mixing_sr)
Lufs_Transform = LoudnessNormalization(min_lufs=-14.0,max_lufs=-14.0,p=1.0)
mixing_data = Lufs_Transform(mixing_data, mixing_sr)
return mixing_data,mixing_sr
## the function that output the mixing file
def OutputMixingFile(self,data, srate, filename):
if filename == "" :
OutputFileName = "FinalMixing_"+datetime.datetime.now().strftime("%Y%m%d_%H%M%S")+".wav"
else:
OutputFileName = filename
isExist = os.path.exists(self.OutputMixingFold)
if not isExist:
# Create a new directory because it does not exist
os.makedirs(self.OutputMixingFold)
OutputPath = self.OutputMixingFold+OutputFileName
## aim to ouput in 24bit depth
##https://stackoverflow.com/questions/16767248/how-do-i-write-a-24-bit-wav-file-in-python
sf.write(OutputPath, data.transpose(), srate, subtype='PCM_16')
#wavfile.write(OutputPath, srate, data.transpose())
##the wavfile output the 25bit file
#print(f"The mixing {OutputPath} is Done")
return OutputPath
##The function that mearsure the file and its codec counterpart, let us say we had "a.wav" we compre "a.wav" and "a.64kbps.wav"
def MeasurePEAQOutputs(self,FilePath, bitrate):
command_out = os.popen("sh /home/codecrack/Jnotebook/Audio_Lame_Peaq.sh -a %s -b %s" % (FilePath, bitrate)).read()
match = re.search(r'Objective Difference Grade: (-?\d+\.\d+)', command_out)
if match:
Objective_sccore = match.group(1)
#print("Value:",Objective_sccore)
return Objective_sccore
else:
print("Notihing out, possible something wrong in the lame or peaq")
##The function that mearsure the file and its unnoised counterpart, let us say we had "a.wav" then contaminated with "a'.wav" we compre "a.wav" and "a'.64kbps.wav"
def MeasurePEAQOutputsVsRef(self,FilePath,bitrate,RefFile):
command_out = os.popen("sh /home/codecrack/Jnotebook/Audio_Lame_Peaq_VSRef.sh -a %s -b %s -r %s" %(FilePath,bitrate,RefFile)).read()
match = re.search(r'Objective Difference Grade: (-?\d+\.\d+)', command_out)
if match:
Objective_sccore = match.group(1)
#print("Value:",Objective_sccore)
return Objective_sccore
else:
print("Notihing out, possible something wrong in the lame or peaq")
return 0.0
def MeasurePEAQOutputwithoutCodec(self,RefFile, ComFile):
command_out = os.popen("peaq --basic %s %s" % (RefFile, ComFile)).read()
match = re.search(r'Objective Difference Grade: (-?\d+\.\d+)', command_out)
if match:
Objective_sccore = match.group(1)
#print("Value:",Objective_sccore)
return Objective_sccore
else:
print("Notihing out, possible something wrong in the lame or peaq")
return 0.0
def AddingGaussianNoise_Single(self,data,srate,manipulation_value):
if manipulation_value!= 0:
V_AddGaussian_Transform = AddGaussianSNR(min_snr_db=manipulation_value,max_snr_db=manipulation_value,p=1.0)
data = V_AddGaussian_Transform(data, sample_rate=srate)
return data,srate
## the function that adding the guassian noise
def AddingGaussianNoise(self,vocal_data, drum_data, bass_data, other_data, srate, manipulation_list):
if manipulation_list[0]!= 0:
V_AddGaussian_Transform = AddGaussianSNR(min_snr_db=manipulation_list[0],max_snr_db=manipulation_list[0],p=1.0)
vocal_data = V_AddGaussian_Transform(vocal_data, sample_rate=srate)
if manipulation_list[1]!= 0:
D_AddGaussian_Transform = AddGaussianSNR(min_snr_db=manipulation_list[1],max_snr_db=manipulation_list[1],p=1.0)
drum_data = D_AddGaussian_Transform(drum_data, sample_rate=srate)
if manipulation_list[2]!= 0:
B_AddGaussian_Transform = AddGaussianSNR(min_snr_db=manipulation_list[2],max_snr_db=manipulation_list[2],p=1.0)
bass_data = B_AddGaussian_Transform(bass_data, sample_rate=srate)
if manipulation_list[3]!= 0:
O_AddGaussian_Transform = AddGaussianSNR(min_snr_db=manipulation_list[3],max_snr_db=manipulation_list[3],p=1.0)
other_data = O_AddGaussian_Transform(other_data, sample_rate=srate)
return vocal_data,drum_data,bass_data,other_data,srate
## the function that adding the clipping distortion
def AddingClippingDistortion_Single(self,data,srate,manipulation_value):
if manipulation_value!= 0:
V_AddClipping_Transform = ClippingDistortion(min_percentile_threshold=manipulation_value,max_percentile_threshold=manipulation_value,p=1.0)
data = V_AddClipping_Transform(data, sample_rate=srate)
return data,srate
def AddingClippingDistortionByFloater_Single(self,data,srate,manipulation_value):
if manipulation_value!= 0:
#V_AddClipping_Transform = Lambda(transform=NoiseEvalEffect.ClippingDistortionWithFloatingThreshold, p=1.0)
#data = V_AddClipping_Transform(data, srate, manipulation_value)
data = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(data, srate, manipulation_value)
return data,srate
## the function that adding the clipping distortion
def AddingClippingDistortion(self,vocal_data, drum_data, bass_data, other_data, srate, manipulation_list):
if manipulation_list[0]!= 0:
V_AddClipping_Transform = ClippingDistortion(min_percentile_threshold=manipulation_list[0],max_percentile_threshold=manipulation_list[0],p=1.0)
vocal_data = V_AddClipping_Transform(vocal_data, sample_rate=srate)
if manipulation_list[1]!= 0:
D_AddClipping_Transform = ClippingDistortion(min_percentile_threshold=manipulation_list[1],max_percentile_threshold=manipulation_list[1],p=1.0)
drum_data = D_AddClipping_Transform(drum_data, sample_rate=srate)
if manipulation_list[2]!= 0:
B_AddClipping_Transform = ClippingDistortion(min_percentile_threshold=manipulation_list[2],max_percentile_threshold=manipulation_list[2],p=1.0)
bass_data = B_AddClipping_Transform(bass_data, sample_rate=srate)
if manipulation_list[3]!= 0:
O_AddClipping_Transform = ClippingDistortion(min_percentile_threshold=manipulation_list[3],max_percentile_threshold=manipulation_list[3],p=1.0)
other_data = O_AddClipping_Transform(other_data, sample_rate=srate)
return vocal_data,drum_data,bass_data,other_data,srate
def AddingClippingDistortionWithFlatoing(self,vocal_data, drum_data, bass_data, other_data, srate, manipulation_list):
if manipulation_list[0]!= 0:
# V_AddClipping_Transform = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(min_percentile_threshold=manipulation_list[0],max_percentile_threshold=manipulation_list[0],p=1.0)
# vocal_data = V_AddClipping_Transform(vocal_data, sample_rate=srate)
vocal_data = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(vocal_data, srate, manipulation_list[0])
if manipulation_list[1]!= 0:
# D_AddClipping_Transform = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(min_percentile_threshold=manipulation_list[1],max_percentile_threshold=manipulation_list[1],p=1.0)
# drum_data = D_AddClipping_Transform(drum_data, sample_rate=srate)
drum_data = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(drum_data, srate, manipulation_list[1])
if manipulation_list[2]!= 0:
# B_AddClipping_Transform = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(min_percentile_threshold=manipulation_list[2],max_percentile_threshold=manipulation_list[2],p=1.0)
# bass_data = B_AddClipping_Transform(bass_data, sample_rate=srate)
bass_data = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(bass_data, srate, manipulation_list[2])
if manipulation_list[3]!= 0:
# O_AddClipping_Transform = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(min_percentile_threshold=manipulation_list[3],max_percentile_threshold=manipulation_list[3],p=1.0)
# other_data = O_AddClipping_Transform(other_data, sample_rate=srate)
other_data = NoiseEvalEffect.ClippingDistortionWithFloatingThreshold(other_data, srate, manipulation_list[3])
return vocal_data,drum_data,bass_data,other_data,srate
## the function that eliminate or adding the dynamice range
## The dynamic range is negative will have effect, set to the revereabsolute value here
def Dynamic_Transform_Single(self,data,srate,manipulation_value):
if manipulation_value!= 0:
V_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_value,max_threshold_db=-manipulation_value,threshold_mode="absolute",p=1.0)
data = V_Dynammic_Transform(data, sample_rate=srate)
return data,srate
def Dynamic_Transform_Single_FullPara(self,data,srate,thres_db,attac_time=0.0003,reles_time=0.05):
if(thres_db != 0):
#Audio_Transform = Limiter(min_threshold_db=-thres_db,max_threshold_db=-thres_db,threshold_mode="relative_to_signal_peak",p=1.0)
Audiomentations_Transform = Limiter(min_threshold_db=-thres_db,max_threshold_db=-thres_db,min_attack=attac_time,max_attack=attac_time,min_release=reles_time,max_release=reles_time,threshold_mode="relative_to_signal_peak",p=1.0)
# Audiomentations_Transform = Limiter(min_threshold_db=-thres_db,max_threshold_db=-thres_db,min_attack=0.0005,max_attack=0.0005,min_release=0.05,max_release=0.05,threshold_mode="relative_to_signal_peak",p=1.0)
data = Audiomentations_Transform(data, sample_rate=srate)
return data,srate
###Implementation the same code using Climiter
def Dynamic_Transform_Single_FullPara_BClimiter(self,data,srate,thres_db,attac_time=0.0003,reles_time=0.05):
if(thres_db != 0):
#Audio_Transform = Limiter(min_threshold_db=-thres_db,max_threshold_db=-thres_db,threshold_mode="relative_to_signal_peak",p=1.0)
data,srate = NoiseEvalEffect.Dynamic_FullPara_BClimiter(data,srate,-thres_db,attac_time,reles_time)
# Audiomentations_Transform = Limiter(min_threshold_db=-thres_db,max_threshold_db=-thres_db,min_attack=0.0005,max_attack=0.0005,min_release=0.05,max_release=0.05,threshold_mode="relative_to_signal_peak",p=1.0)
return data,srate
## the function that eliminate or adding the dynamice range
## The dynamic range is negative will have effect, set to the negative value here
def Dynamic_Transform(self,vocal_data, drum_data, bass_data, other_data, srate, manipulation_list):
if manipulation_list[0]!= 0:
V_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[0],max_threshold_db=-manipulation_list[0],threshold_mode="relative_to_signal_peak",p=1.0)
vocal_data = V_Dynammic_Transform(vocal_data, sample_rate=srate)
if manipulation_list[1]!= 0:
D_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[1],max_threshold_db=-manipulation_list[1],threshold_mode="relative_to_signal_peak",p=1.0)
drum_data = D_Dynammic_Transform(drum_data, sample_rate=srate)
if manipulation_list[2]!= 0:
B_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[2],max_threshold_db=-manipulation_list[2],threshold_mode="relative_to_signal_peak",p=1.0)
bass_data = B_Dynammic_Transform(bass_data, sample_rate=srate)
if manipulation_list[3]!= 0:
O_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[3],max_threshold_db=-manipulation_list[3],threshold_mode="relative_to_signal_peak",p=1.0)
other_data = O_Dynammic_Transform(other_data, sample_rate=srate)
return vocal_data,drum_data,bass_data,other_data,srate
def Dynamic_Transform_FullPara(self,vocal_data, drum_data, bass_data, other_data, srate, manipulation_list,attac_time=0.0003,reles_time=0.05):
if manipulation_list[0]!= 0:
V_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[0],max_threshold_db=-manipulation_list[0],min_attack=attac_time,max_attack=attac_time,min_release=reles_time,max_release=reles_time,threshold_mode="relative_to_signal_peak",p=1.0)
vocal_data = V_Dynammic_Transform(vocal_data, sample_rate=srate)
if manipulation_list[1]!= 0:
D_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[1],max_threshold_db=-manipulation_list[1],min_attack=attac_time,max_attack=attac_time,min_release=reles_time,max_release=reles_time,threshold_mode="relative_to_signal_peak",p=1.0)
drum_data = D_Dynammic_Transform(drum_data, sample_rate=srate)
if manipulation_list[2]!= 0:
B_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[2],max_threshold_db=-manipulation_list[2],min_attack=attac_time,max_attack=attac_time,min_release=reles_time,max_release=reles_time,threshold_mode="relative_to_signal_peak",p=1.0)
bass_data = B_Dynammic_Transform(bass_data, sample_rate=srate)
if manipulation_list[3]!= 0:
O_Dynammic_Transform = Limiter(min_threshold_db=-manipulation_list[3],max_threshold_db=-manipulation_list[3],min_attack=attac_time,max_attack=attac_time,min_release=reles_time,max_release=reles_time,threshold_mode="relative_to_signal_peak",p=1.0)
other_data = O_Dynammic_Transform(other_data, sample_rate=srate)
return vocal_data,drum_data,bass_data,other_data,srate
###The fold should including the four type of stems files 'vocals''drum''bass''other'
###isMONO will decide whether the file be mixed to. by default setting, the input files will in Stereo.
def __init__(self, foldpath, filename="", isMONO=True, StartingTime=0, TrackType = NEUtil.MixingType.Track):
self.Foldpath = foldpath
self.isMONO = isMONO
self.OutputMixingFold = foldpath +'/Mixing_Result/'
self.StartingTime = StartingTime
if TrackType == NEUtil.MixingType.File:
if os.path.isfile(foldpath+"/"+filename):
self.InitalData,self.SampleRate = self.LoadSingleFile(filename,foldpath,isMONO, StartingTime)
else:
print("NO, File is not existing")
else:
self.Inital_V_Data, self.Inital_D_Data, self.Inital_B_Data, self.Inital_O_Data, self.SampleRate = self.LoadTrack(self.Foldpath, isMONO, StartingTime)
print("Mixing File Load Sucessful")