-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
95 lines (79 loc) · 3.21 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch.nn as nn
from torchvision import models
from torchvision.models import VGG19_Weights
class VGG(nn.Module):
def __init__(self, content_layers, style_layers):
super(VGG, self).__init__()
self.model = models.vgg19(weights=VGG19_Weights.IMAGENET1K_V1).features
self.content_layers = content_layers.keys()
self.style_layers = style_layers.keys()
# 冻结模型的所有参数
for param in self.model.parameters():
param.requires_grad = False
def forward(self, x):
"""
对vgg19网络的包装,前向传播时保留了内容层和风格层的中间输出
:param x:
:return: 内容层和风格层的特征图
"""
content_features = {}
style_features = {}
for name, layer in self.model._modules.items():
x = layer(x)
if name in self.content_layers:
content_features[name] = x
if name in self.style_layers:
style_features[name] = x
return content_features, style_features
class ResBlock(nn.Module):
def __init__(self, c):
super(ResBlock, self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(c, c, 3, 1, 1, bias=False),
nn.InstanceNorm2d(c),
nn.ReLU(True),
nn.Conv2d(c, c, 3, 1, 1, bias=False),
nn.InstanceNorm2d(c)
)
def forward(self, x):
return x + self.layer(x)
class TransNet(nn.Module):
def __init__(self, input_size):
"""
实时内容生成网络
"""
super(TransNet, self).__init__()
self.input_size = input_size
self.layer = nn.Sequential(
###################下采样层################
nn.Conv2d(in_channels=3, out_channels=32, kernel_size=9, stride=1, padding=4, bias=False),
nn.InstanceNorm2d(32),
nn.ReLU(True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(True),
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(128),
nn.ReLU(True),
##################残差层##################
ResBlock(128),
ResBlock(128),
ResBlock(128),
ResBlock(128),
ResBlock(128),
################上采样层##################
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(64),
nn.ReLU(True),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1, bias=False),
nn.InstanceNorm2d(32),
nn.ReLU(True),
###############输出层#####################
nn.Conv2d(in_channels=32, out_channels=3, kernel_size=9, stride=1, padding=4, bias=False),
nn.Sigmoid(),
nn.AdaptiveAvgPool2d(self.input_size)
)
def forward(self, x):
return self.layer(x)