
Page 1 of 13

[This document is shared externally with Non-googlers. Please comment
accordingly.]
gRPC Java Team

gRPC Java
LoadBalancer v2

Summary
The current gRPC Java client-side
load-balancing mechanism has
issues in connection selection and
with wait-for-ready RPCs. We
propose a new design that tries to
solve those issues.

Owner: zhangkun
Contributors: ejona
Status: Implemented
Created: 2016-09-29
Self Link:
go/grpc-java-lb-v2

Spacer row, do not delete :-)

Background

Known issues

Early commitment

Wait-for-ready / fail-fast RPCs

Repeated work among LoadBalancers

Cleaning up unused connections

Other minor issues

Unable to create multiple connections for the same address which is needed by L4
load-balancing

Affinity key is not used when assigning a pending RPC to a Transport.

Unable to add headers to RPCs

Proposal

API

Highlights

TransportSet gets no DelayedClientTransport

http://go/grpc-java-lb-v2

Page 2 of 13

One DelayedClientTransport rules all

OOB channel

Listening to Subchannels’ states

Listening to name resolution events

shutdown()

Channel executor

How it solves aforementioned issues

Caveats

Implementation plan

Example implementations

PickFirstLoadBalancer

RoundRobinLoadBalancer

Revision history

Background
In gRPC Java, the Channel (ManagedChannelImpl) is a logical connection to a target specified
by an URI, which represents a single server or a collection of servers that serve the same gRPC
service. Channel manages connections to the servers. Each connection is managed by an
object called Transport (ClientTransport). For each RPC, a Channel selects a Transport and
creates a Stream—which is a low-level abstraction of the RPC—on the Transport.

Between Channel and Transport, there is a layer called TransportSet. A TransportSet is bound to
a group of equivalent addresses (EquivalentAddressGroup, EAG) that usually point to the same
server. A TransportSet has at most one active Transport, and zero to multiple shutdown
Transports. LoadBalancer is a plug-in component of Channel that actually does the job of
choosing an EAG and provides a Transport for each individual RPC.

The original design document is go/grpc-java-lb, which is a bit outdated in terms of naming, but
is still accurate in terms of semantics. go/grpc-java-transport-management is also worth
reading if you don’t know how Channel works.

https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/internal/ManagedChannelImpl.java
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/internal/ClientTransport.java
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/internal/TransportSet.java
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/EquivalentAddressGroup.java
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/LoadBalancer.java
http://go/grpc-java-lb
https://goto.google.com/grpc-java-transport-management

Page 3 of 13

Known issues

Early commitment
#1600 is the manifestation of this issue in round-robin, but it actually affects all LoadBalancers.

Early commitment means an RPC is assigned to a TransportSet too soon, when it’s still
connecting or even in transient failure. As a result, a fail-fast RPC may fail even though there are
other TransportSets that are ready, e.g., in the round-robin case. A wait-for-ready RPC may stick
in the TransportSet forever if it never becomes ready, even though there are other TransportSets
that are ready in the round-robin case, or a new TransportSet has been created for a newly
resolved address in the pick-first case.

Early commitment is unavoidable in the current LoadBalancer API, because

1. LoadBalancer doesn’t have a way to know which TransportSets are ready and which are
not.

2. The assignment of an RPC to a TransportSet is irreversible. The RPC sticks with a
TransportSet forever.

Wait-for-ready / fail-fast RPCs
wait-for-ready.md

Wait-for-ready semantics depend on a unified view of the connectivity state of the Channel.
LoadBalancer is in the best position to have such a view. Therefore, LoadBalancer needs to
implement connectivity state semantics, and Channel will just use it.

The decision on whether to fail or buffer (delay) an RPC at the point of connectivity state
transition, must be done by someone that knows the current state of the whole Channel.
Currently TransportSet makes the decision on the RPCs buffered in its DelayedClientTransport,
but it doesn’t know the whole Channel’s connectivity state, thus is unable to make the right
decision.

Repeated work among LoadBalancers
#2211

In current API, LoadBalancer is bound to returning a Transport for each RPC. If it’s not ready yet,
e.g., waiting for name resolution, it spills a DelayedClientTransport (called interim transport in
the LoadBalancer API), in which the RPCs are buffered. It becomes LoadBalancer’s
responsibility to transfer the buffered RPCs to “real” Transports. Last but not the least,
LoadBalancer API is thread-safe, that means implementation needs to have synchronization.

LoadBalancer implementations are found to repeat in two aspects:

● Implementation-wise, every single LoadBalancer would implement the same buffering
and transferring logic, similar error handling and synchronization, which are non-trivial.

https://github.com/grpc/grpc-java/issues/1600
https://github.com/grpc/grpc/blob/master/doc/wait-for-ready.md
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/internal/DelayedClientTransport.java
https://github.com/grpc/grpc-java/issues/2211

Page 4 of 13

● Semantic-wise, this gives LoadBalancer the responsibility to make decisions on failing or
buffering RPCs according to their wait-for-ready-ness and the LoadBalancer’s
connectivity state. Every LoadBalancer needs to make sure they comply with the
wait-for-ready semantics, which is repeated work, and has thus the ability to violate the
semantics, which is worse.

As a side note, having DelayedClientTransport in both the LoadBalancer and the TransportSet
doesn’t have any benefit and only adds complexity to the system.

Cleaning up unused connections
#2276

The server addresses may change, either from NameResolver or an external load-balancing
service. Channel needs to shut down the TransportSets for the addresses that are no longer
used. In the current API, updateRetainedTransports() is supposed to do the job, but it isn’t
mandatory, and the Channel needs to have some backup clean-up mechanism.

An intuitive solution is that Channel may keep track of the time a TransportSet was last used,
and shut it down after a certain grace period. However, this isn’t a one-size-fit-all grace period. In
some hard-affinity cases where the client may connect to a large variety of servers, but doesn’t
need to keep the connection for long. In a plain round-robin, it’s desirable to keep connections
for longer.

The current API tries to make LoadBalancers easier to implement, by keeping the responsibility
of Transport management in Channel. Now it seems more reasonable to move such
responsibility onto LoadBalancer, because Channel doesn’t have the knowledge to do the
management efficiently.

Other minor issues
The following issues can be resolved through minor tweaks on the API.

Unable to create multiple connections for the same address which is needed by
L4 load-balancing

#7957

Channel creates only one TransportSet for each EAG. This can be fixed by adding an additional
field to EAG that makes it possible to have two EAGs with the same addresses but are inequal.

Affinity key is not used when assigning a pending RPC to a Transport.

#2302

This can be fixed by changing the InterimTransport interface to pass the affinity key.

https://github.com/grpc/grpc-java/issues/2276
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/NameResolver.java
https://github.com/grpc/grpc-java/blob/v1.0.1/core/src/main/java/io/grpc/TransportManager.java#L47
https://github.com/grpc/grpc/issues/7957
https://github.com/grpc/grpc-java/issues/2302

Page 5 of 13

Unable to add headers to RPCs

#2301

GRPCLB needs to attach a LB token to each RPC. Currently LoadBalancer API doesn’t provide a
way to do that. It can be solved by passing the headers to pickTransport().

Proposal

API
@NotThreadSafe
interface LoadBalancer {
// All methods are run in the LoadBalancer executor, a serializing
// executor.
void handleResolvedAddresses(

List<ResolvedServerInfoGroup> servers, Attributes attributes);
void handleNameResolutionError(Status error);
// Supersedes handleTransportReady() and handleTransportShutdown()
void handleSubchannelState(

Subchannel subchannel, ConnectivityStateInfo stateInfo);
void shutdown();

// Where the LoadBalancer implement the main routing logic
@ThreadSafe
interface SubchannelPicker {
PickResult pickSubchannel(Attributes affinity, Metadata headers);

}
pojo PickResult {
// A READY channel, or null
Subchannel subchannel;
// An error to be propagated to the application if subchannel == null
// Or OK if there is no error.
// Both subchannel and error being null means RPC needs to wait
Status status;

}

// Implemented by Channel, used by LoadBalancer implementations.
@ThreadSafe
interface Helper {
// Subchannel for making RPCs. Wraps a TransportSet
Subchannel createSubChannel(EquivalentAddressGroup, Attributes);
// Out-of-band channel for LoadBalancer’s own RPC needs, e.g.,
// talking to an external load-balancer. Wraps a TransportSet
ManagedChannel createOobChannel(

EquivalentAddressGroup eag, String authority);
// LoadBalancer calls this whenever its connectivity state changes.

https://github.com/grpc/grpc-java/issues/2301

Page 6 of 13

// Channel will use the new picker against all pending RPCs
void updatePicker(SubchannelPicker);
// Schedule a task to be run in the Channel Executor, which serializes
// the task with the other callback methods on LoadBalancer
void runSerialized(Runnable task);
// For GRPCLB which needs to resolve the address for delegation
NameResolver.Factory getNameResolverFactory();
String getAuthority();

}

// Wraps a TransportSet
@ThreadSafe
interface Subchannel {
void shutdown();
void requestConnection();
EquivalentAddressGroup getAddresses();
// The same Attributes passed to createSubChannel.
// LoadBalancer can use it to attach additional information here, e.g.,
// the shard this Subchannel belongs to.
Attributes getAttributes();

}

@ThreadSafe
interface Factory {
LoadBalancer newLoadBalancer(Helper helper);

}
}

pojo ConnectivityStateInfo {
ConnectivityState state;
// Non-OK if state == TRANSIENT_FAILURE
Status error;

}

Note: most of the “interface”s will be “abstract class”es in the actual Java API for better
extensibility.

Highlights

TransportSet (renamed to InternalSubchannel) gets no DelayedClientTransport

TransportSet no longer has its own DelayedClientTransport. When requested, it either returns a
READY Transport, or null if it’s not READY.

There are two race conditions:

Page 7 of 13

1. A TransportSet should not be picked if it’s not READY, but there is a race between 1)
LoadBalancer being notified about a previously READY TransportSet becoming not
READY, and 2) picker picking that TransportSet. If Channel gets a null Transport from the
TransportSet returned by the picker, it will keep this RPC buffered (the same effect as
getting a PickResult(null, null). Eventually LoadBalancer will be notified about the state
change and issue another picker which has the updated information.

2. There is also a race between 1) a Transport is picked and newStream() is called on it,
and 2) its Subchannel is shutdown by LoadBalancer (e.g., because of address change). If
(2) wins, the app will see a spurious error. This can be worked around by delaying
shutdown of TransportSet in Subchannel.shutdown().

One DelayedClientTransport rules all

Channel keeps one DelayedClientTransport to buffer RPCs. For every new RPC, it calls
SubchannelPicker.pickSubchannel() and make a decision based on the returned PickResult and
the RPC’s wait-for-ready-ness:

Subchannel Error Decision

Yes * Assign to Subchannel

No Yes Fail-fast: fail immediately.
Wait-for-ready: buffer

No No Both: buffer

If LoadBalancer has not called Helper.updatePicker() yet, Channel will buffer RPCs.
DelayedClientTransport will have a new method -- reprocess(SubchannelPicker newPicker). Here
is how it works:

● Every time pickerUpdated() is called, Channel calls newPicker() to get the latest picker,
then call reprocess(SubchannelPicker newPicker), which calls
newPicker.pickSubchannel() for every buffered RPC. If the decision is “buffer” again, the
RPC stays in the DelayedClientTransport.

● To reduce the risk of deadlock, reprocess() doesn’t hold a lock when calling
pickSubchannel(). Because Channel makes the new picker current piro

○ There is a race between an RPC being processed by an older picker only to be
buffered, and a newer picker being passed to Channel. The RPC may miss the
newer picker, unless DelayedClientTransport assigns a version number to each
picker it sees, and associate each buffered RPC with the version of the last picker
that made the “buffer” decision. reprocess() will repeat the process until all
buffered RPCs have seen the latest picker.

Page 8 of 13

OOB channel
Currently the OOB transport is backed by a TransportSet, which has a DelayedClientTransport.
This is nice because LoadBalancer only needs a simple wrapper (SingleTransportChannel) and
can make OOB RPCs on it, without needing to worry about the readiness of the TransportSet.

Now that TransportSet will lose its DelayedClientTransport, the OOB channel will still wrap a
TransportSet, but have its own DelayedClientTransport.

Listening to Subchannels’ states

In order to make informative decisions, LoadBalancer needs to listen to the state changes of all
Subchannels.

The application-oriented channel-state API on ManagedChannel falls short because it can miss
brief edges to TRANSIENT_FAILURE (#28), where the LoadBalancer should fail buffered fail-fast
RPCs. It is also essential for Subchannel to provide LoadBalancer the error Status in case of
TRANSIENT_FAILURE. Therefore, we don’t use the channel-state API, but instead introduce
handleSubchannelState() that will not miss a single edge.

Listening to name resolution events

Besides Subchannel state change, LoadBalancer should also react to every name resolution
event. The decision is made with both the Subchannel state and name resolution events, so the
handling of them should all be synchronized, which is guaranteed by having them on the same
non-thread-safe interface (i.e., LoadBalancer).

shutdown()

shutdown() would typically do final cleanups and eventually close all the Subchannels.
Alternatively, Channel can shutdown the Subchannels and OOB channels for LoadBalancer when
Channel goes to IDLE mode or is shutting down. However, a LoadBalancer may still want to do
something, e.g., send a final message on the OOB channel, before shutting down. It’s better to
leave the responsibility to LoadBalancer.

This means, Channel no longer shuts down TransportSets. It’s all up to LoadBalancer to do this.
Channel will still keep track of the TransportSet and wait for them to be terminated before it is
terminated.

When Channel is shut down, it doesn’t necessarily immediately shut down NameResolver and
LoadBalancer. Channel’s shutdown process will be:

1. When ManagedChannelImpl.shutdown() called:
a. Stop accepting new calls
b. Shutdown delayed transport
c. All other functionalities continue working.

2. Once the delayed transport is terminated, shutdown NameResolver and LoadBalancer.
3. Once all subchannels and all OOB channels have terminated, ManagedChannelImpl will

terminate.

https://github.com/grpc/grpc-java/issues/28#issuecomment-247732624

Page 9 of 13

Channel Executor

Basically, the LoadBalancer needs to react to every single state change and the reactions needs
to be synchronized. It makes sense for all these internal logic to be serialized, by Channel, so
that LoadBalancer doesn’t need to worry about synchronization.

We call out Channel Executor, which is a serializing executor created by Channel for the tasks
that mutate the state of Channel. It’s used everywhere in LoadBalancer:

1. It runs all callbacks from StateListener
2. It’s OOB channel’s default executor, thus its RPC callbacks and connectivity state

callbacks are run from it.
3. It is exposed via Helper so that LoadBalancer can use it directly

Note that pickSubchannel() is NOT run from the Channel Executor. It’s the only thing that can be
run concurrently with the rest of the LoadBalancer. The recommended practice for
LoadBalancer is always creating SubchannelPickers either without any mutable state or with
mutable states that are only accessible within the picker, then the rest of the LoadBalancer
doesn’t need any locking.

Because it’s TransportSet.Callback that notifies LoadBalancer about connectivity state, we will
also run TransportSet.Callback from Channel Executor. As a result, Channel’s idleness
management is also run from Channel Executor. This will also improve code health by clearly
defining TransportSet.Callback’s threading model, which is currently missing.

How it solves aforementioned issues
Early commitment: Every Subchannel’s state change is emitted to LoadBalancer, which can then
skip failing TransportSets. Only Channel buffers RPCs, and it goes over all buffered RPC for each
new picker, thus an RPC will never stuck in a particular TransportSet.

Wait-for-ready / fail-fast RPCs: LoadBalancer notifies Channel about the connectivity-state
through PickResult, and it’s Channel that looks at the wait-for-ready-ness and the state to make
decision.

Repeated work among LoadBalancers: buffering, most error handling, and synchronization are
all done inside Channel. Making the LoadBalancer API not thread-safe substantially simplifies
the implementation work of LoadBalancers. They can now focus on the actual routing logic.

Cleaning up unused connections: it now becomes LoadBalancer’s responsibility to shutdown
unused Subchannels. It greatly reduced the work by Channel, and doesn’t add much work to
LoadBalancers because they usually have a better idea to tell which Subchannels are useful and
which are not.

L4 load-balancing: now LoadBalancer is free to create multiple Subchannels for the same EAG.

Affinity key is not used when assigning a pending RPC to a Transport: when a pending (buffered)
RPC picks a real Transport, it goes through the same picking interface as the first attempt,
which has the affinity key available.

https://github.com/grpc/grpc-java/blob/v1.0.x/core/src/main/java/io/grpc/internal/TransportSet.java#L503

Page 10 of 13

Adding headers to RPCs: the headers object is accessible at the initial and subsequent picks.
LoadBalancer is free to add additional metadata to it at those points.

Caveats
Channel executor is a serializing executor on top of the application executor. If application uses
a direct executor, all the methods on LoadBalancer will be run either a NameResolver thread or a
transport thread, thus it may be under a lock. We need to be cautious about of the potential risk
of deadlock. That said, this is an existing issue in the current API, because the handle*()
methods are already run from NameResolver thread and transport thread.

Implementation steps
This is an overhaul of the LoadBalancer API and the related logic. It’s hard to keep the
backward-compatibility on the API, and to make incremental changes that keep the current
behavior. Fortunately the API is still experimental, and we are free to change it. In order to make
it easy to review, and not breaking the HEAD in the meantime, we will develop the new version
with alternative class names, without overwriting the current implementation. The development
can be done in the following incremental steps:

1. InternalSubchannel (Done: #2427)
2. DelayedClientTransport2 (Done: #2443)
3. LoadBalancer2 API (Done: #2443, #2501)
4. Channel Executor (Done: #2493, #2503, #2505)
5. ManagedChannelImpl2 (Done: #2530)
6. PickFirstLoadBalancerFactory2 and RoundRobinLoadBalancerFactory2 (Done: #2479)
7. GrpclbLoadBalancerFactory2 (Done: #2557)
8. Switch AbstractManagedChannelImplBuilder to ManagedChannelImpl2 (Done: #2707)
9. Delete original implementations, including obsolete code in DelayedClientTransport;

Rename new implementation classes to the original names, by removing the suffix “2”.
(Done #2743)

Example implementations

PickFirstLoadBalancer

class PickFirstLoadBalancer extends LoadBalancer {
final Helper helper;
Subchannel subchannel;

void handleResolvedAddresses(List<ResolvedServerInfoGroup> servers, …) {
EquivalentAddressGroup newEag = flatten(servers);
if (!newEag.equals(subchannel.getAddresses()) {
subchannel.shutdown();
subchannel = helper.createSubchannel(newEag, Attributes.EMPTY);
helper.updatePicker(new Picker(sc));

}

https://github.com/grpc/grpc-java/pull/2427
https://github.com/grpc/grpc-java/pull/2443
https://github.com/grpc/grpc-java/pull/2443
https://github.com/grpc/grpc-java/pull/2501
https://github.com/grpc/grpc-java/pull/2493
https://github.com/grpc/grpc-java/pull/2503
https://github.com/grpc/grpc-java/pull/2505
https://github.com/grpc/grpc-java/pull/2530
https://github.com/grpc/grpc-java/pull/2479
https://github.com/grpc/grpc-java/pull/2557
https://github.com/grpc/grpc-java/pull/2707
https://github.com/grpc/grpc-java/pull/2743

Page 11 of 13

}

void handleNameResolutionError(Status error) {
helper.updatePicker(new Picker(subchannel, error));

}

void handleSubchannelState(final Subchannel sc,
final ConnectivityStateInfo stateInfo) {

if (sc != this.subchannel || stateInfo.state == SHUTDOWN) {
return;

}
if (stateInfo.state == TRANSIENT_FAILURE) {
helper.updatePicker(new Picker(stateInfo.error));

} else if (stateInfo.state == READY) {
helper.updatePicker(new Picker(sc));

} else {
// IDLE or CONNECTING: buffer the RPC
if (stateInfo.state == IDLE) {
sc.requestConnection();

}
helper.updatePicker(new Picker());

}
}

void shutdown() {
subchannel.shutdown();

}

static class Picker extends SubchannelPicker {
final Status error;
final Subchannel sc;
final PickResult result = new PickResult(error, sc);
PickResult pickSubchannel(...) {
sc.requestConnection();
return result;

}
}

}

RoundRobinLoadBalancer
class RoundRobinLoadBalancer extends LoadBalancer {
static final Attributes.Key<Holder<ConnectivityStateInfo>> LAST_STATE;

final Helper helper;
HashMap<EAG, Subchannel> subchannels;
// The full list
ArrayList<Subchannel> roundRobinList;

Page 12 of 13

// The full list excluding the TRANSIENT_FAILURE ones
ArrayList<Subchannel> activeList;

void handleResolvedAddresses(List<ResolvedServerInfoGroup> servers, …) {
List<EquivalentAddressGroup> latestAddressList = convert(servers);
Set<EquivalentAddressGroup> addedAddresses = …;
Set<Subchannel> toBeShutdown = …;
for (EquivalentAddressGroup eag : addedAddresses) {
Subchannel subchannel = helper.createSubchannel(eag,

Attributes.with(LAST_STATE, new Holder());
subchannel.requestConnection();
subchannels.put(eag, subchannel);

}
for (Subchannel subchannel : toBeShutdown) {
subchannels.remove(subchannel);
subchannel.shutdown();

}
roundRobinList = updateRoundRobinList(latestAddressList);
refreshList(null);

}

void handleNameResolutionError(Status error) {
refreshList(activeList, error);

}

void handleSubchannelState(final Subchannel sc,
final ConnectivityStateInfo stateInfo) {

if (!subchannels.contains(sc)) {
return;

}
if (stateInfo.state == IDLE) {
sc.requestConnection();

}
sc.getAttributes().get(LAST_STATE).set(stateInfo);
refreshList(getAggregatedError());

}

void shutdown() {
for (Subchannel subchannel : subchannels.values()) {
subchannel.shutdown();

}
}

private Status getAggregatedError() {
// if all subchannels are TRANSIENT_FAILURE, return the Status associated
// with an arbitrary subchannel, or maybe the concatenated message
// otherwise, return null

}

Page 13 of 13

private void refreshList(@Nullable Status error) {
// filter() discards the Subchannels with state == TRANSIENT_ERROR
activeList = filter(roundRobinList);
helper.updatePicker(new Picker(activeList, error));

}

static class Picker extends SubchannelPicker {
final Status error;
final ArrayList<Subchannel> list;
int pos;

PickResult pickSubchannel(...) {
if (!list.isEmpty()) {
synchronized (this) {
return new PickResult(list.get((pos + 1) % list.size()));

}
} else {
return new PickResult(error);

}
}

}
}

Revision history

Date Author Description Reviewed
by

Approved
by

2016-09-30 zhangkun First version ejona ejona

2016-11-15 zhangkun Renames LoadBalancer Executor to
Channel Executor and expands its
usage to TransportSet.Callback

