-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtranslate.py
333 lines (300 loc) · 15.7 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/python3
# Author: GMFTBY
# Time: 2019.9.16
'''
Translate the test dataset with the best trained model
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import argparse
from tqdm import tqdm
import random
import ipdb
import math
from utils import *
from data_loader import *
from model.seq2seq_attention import Seq2Seq
from model.HRED import HRED
from model.HRED_cf import HRED_cf
from model.when2talk_GCN import When2Talk_GCN
from model.when2talk_GAT import When2Talk_GAT
from model.GCNRNN import GCNRNN
from model.GatedGCN import GatedGCN
from model.W2T_RNN_First import W2T_RNN_First
from model.W2T_GCNRNN import W2T_GCNRNN
from model.GatedGCN_nobi import GatedGCN_nobi
from model.GATRNN import GATRNN
def translate(**kwargs):
# load the vocab
tgt_vocab = load_pickle(kwargs['tgt_vocab'])
src_vocab = load_pickle(kwargs['src_vocab'])
src_w2idx, src_idx2w = src_vocab
tgt_w2idx, tgt_idx2w = tgt_vocab
# load dataset
if kwargs['hierarchical'] == 1:
if kwargs['cf'] == 1:
func = get_batch_data_cf
else:
func = get_batch_data
else:
if kwargs['cf'] == 1:
func = get_batch_data_flatten_cf
else:
func = get_batch_data_flatten
if kwargs['model'] == 'hred':
func = get_batch_data_cf
if kwargs['graph'] == 0:
test_iter = func(kwargs['src_test'], kwargs['tgt_test'],
kwargs['src_vocab'], kwargs['tgt_vocab'],
kwargs['batch_size'], kwargs['maxlen'], plus=kwargs['plus'])
else:
test_iter = get_batch_data_cf_graph(kwargs['src_test'], kwargs['tgt_test'],
kwargs['test_graph'], kwargs['src_vocab'],
kwargs['tgt_vocab'], kwargs['batch_size'],
kwargs['maxlen'], plus=kwargs['plus'])
print(f'[!] plus mode: {kwargs["plus"]}')
# load net
if kwargs['model'] == 'seq2seq':
net = Seq2Seq(len(src_w2idx), kwargs['embed_size'],
len(tgt_w2idx), kwargs['utter_hidden'],
kwargs['decoder_hidden'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], utter_n_layer=kwargs['utter_n_layer'])
elif kwargs['model'] == 'hred':
net = HRED(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], utter_n_layer=kwargs['utter_n_layer'])
elif kwargs['model'] == 'hred-cf':
net = HRED_cf(kwargs['embed_size'], len(src_w2idx), len(tgt_w2idx),
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], pad=tgt_w2idx['<pad>'],
sos=tgt_w2idx['<sos>'], utter_n_layer=kwargs['utter_n_layer'],
user_embed_size=kwargs['user_embed_size'])
elif kwargs['model'] == 'when2talk_GCN':
net = When2Talk_GCN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
contextrnn=kwargs['contextrnn'])
elif kwargs['model'] == 'when2talk_GAT':
net = When2Talk_GAT(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
contextrnn=kwargs['contextrnn'])
elif kwargs['model'] == 'GATRNN':
net = GATRNN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
elif kwargs['model'] == 'GCNRNN':
net = GCNRNN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
elif kwargs['model'] == 'W2T_GCNRNN':
net = W2T_GCNRNN(len(src_w2idx), len(tgt_w2idx),
kwargs['embed_size'],
kwargs['utter_hidden'],
kwargs['context_hidden'],
kwargs['decoder_hidden'],
kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"],
pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'])
elif kwargs['model'] == 'GatedGCN':
net = GatedGCN(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
elif kwargs['model'] == 'GatedGCN_nobi':
net = GatedGCN_nobi(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'],
context_threshold=kwargs['context_threshold'])
elif kwargs['model'] == 'W2T_RNN_First':
net = W2T_RNN_First(len(src_w2idx), len(tgt_w2idx), kwargs['embed_size'],
kwargs['utter_hidden'], kwargs['context_hidden'],
kwargs['decoder_hidden'], kwargs['position_embed_size'],
user_embed_size=kwargs['user_embed_size'],
sos=tgt_w2idx["<sos>"], pad=tgt_w2idx['<pad>'],
utter_n_layer=kwargs['utter_n_layer'])
else:
raise Exception('[!] wrong model (seq2seq, hred, hred-cf)')
if torch.cuda.is_available():
net.cuda()
net.eval()
print('Net:')
print(net)
# load best model
load_best_model(kwargs["dataset"], kwargs['model'], net,
kwargs['min_threshold'], kwargs['max_threshold'])
# translate
with open(kwargs['pred'], 'w') as f:
pbar = tqdm(test_iter)
for batch in pbar:
if kwargs['cf'] == 1:
if kwargs['graph'] == 1:
sbatch, tbatch, gbatch, subatch, tubatch, label, turn_lengths = batch
else:
sbatch, tbatch, subatch, tubatch, label, turn_lengths = batch
else:
if kwargs['model'] == 'hred':
sbatch, tbatch, subatch, tubatch, label, turn_lengths = batch
else:
sbatch, tbatch, turn_lengths = batch
batch_size = tbatch.shape[1]
if kwargs['hierarchical']:
turn_size = len(sbatch)
src_pad, tgt_pad = src_w2idx['<pad>'], tgt_w2idx['<pad>']
src_eos, tgt_eos = src_w2idx['<eos>'], tgt_w2idx['<eos>']
# output: [maxlen, batch_size], de: [batch]
if kwargs['cf'] == 1:
if kwargs['graph'] == 1:
de, output = net.predict(sbatch, gbatch, subatch, tubatch,
kwargs['maxlen'], turn_lengths)
else:
de, output = net.predict(sbatch, subatch, tubatch,
kwargs['maxlen'], turn_lengths)
# fix de
de = (de > 0.5).long().cpu().tolist()
label = label.cpu().tolist()
else:
if kwargs['model'] == 'hred':
output = net.predict(sbatch, subatch, tubatch,
kwargs['maxlen'], turn_lengths)
else:
output = net.predict(sbatch,
kwargs['maxlen'], turn_lengths)
# [turn, batch, output_size]
# output = torch.max(output, 2)[1]
for i in range(batch_size):
ref = list(map(int, tbatch[:, i].tolist()))
tgt = list(map(int, output[:, i].tolist())) # [maxlen]
if kwargs['hierarchical']:
src = [sbatch[j][:, i].tolist() for j in range(turn_size)] # [turns, maxlen]
else:
src = list(map(int, sbatch[:, i].tolist()))
# filte the <pad>
ref_endx = ref.index(tgt_pad) if tgt_pad in ref else len(ref)
ref_endx_ = ref.index(tgt_eos) if tgt_eos in ref else len(ref)
ref_endx = min(ref_endx, ref_endx_)
ref = ref[1:ref_endx]
ref = ' '.join(num2seq(ref, tgt_idx2w))
tgt_endx = tgt.index(tgt_pad) if tgt_pad in tgt else len(tgt)
tgt_endx_ = tgt.index(tgt_eos) if tgt_eos in tgt else len(tgt)
tgt_endx = min(tgt_endx, tgt_endx_)
tgt = tgt[1:tgt_endx]
tgt = ' '.join(num2seq(tgt, tgt_idx2w))
tgt = tgt.replace('<sos>', '').strip()
if kwargs['hierarchical']:
source = []
for item in src:
item_endx = item.index(src_pad) if src_pad in item else len(item)
item_endx_ = item.index(src_eos) if src_eos in item else len(item)
item_endx = min(item_endx, item_endx_)
item = item[1:item_endx]
item = num2seq(item, src_idx2w)
source.append(' '.join(item))
src = ' __eou__ '.join(source)
else:
src_endx = src.index(src_pad) if src_pad in src else len(src)
src_endx_ = src.index(src_eos) if src_eos in src else len(src)
sec_endx = min(src_endx, src_endx_)
src = src[1:src_endx]
src = ' '.join(num2seq(src, src_idx2w))
# clean the ref and tgt
ref = ref.replace('<1>', '').strip()
ref = ref.replace('<0>', '').strip()
ref = ref.replace('< 1 >', '').strip()
ref = ref.replace('< 0 >', '').strip()
tgt = tgt.replace('<1>', '').strip()
tgt = tgt.replace('<0>', '').strip()
tgt = tgt.replace('< 1 >', '').strip()
tgt = tgt.replace('< 0 >', '').strip()
if kwargs['cf'] == 1:
# print the user information before the utterances
# speaker = tubatch[i].cpu().item()
f.write(f'- src: {src}\n')
if label[i] == 1:
f.write(f'+ ref: {ref}\n')
else:
f.write(f'- ref: {ref}\n')
if de[i] == 1:
f.write(f'+ tgt: {tgt}\n\n')
else:
f.write(f'- tgt: {tgt}\n\n')
else:
f.write(f'- src: {src}\n')
f.write(f'- ref: {ref}\n')
f.write(f'- tgt: {tgt}\n\n')
print(f'[!] write the translate result into {kwargs["pred"]}')
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Translate script')
parser.add_argument('--src_test', type=str, default=None, help='src test file')
parser.add_argument('--tgt_test', type=str, default=None, help='tgt test file')
parser.add_argument('--min_threshold', type=int, default=20,
help='epoch threshold for loading best model')
parser.add_argument('--max_threshold', type=int, default=20,
help='epoch threshold for loading best model')
parser.add_argument('--batch_size', type=int, default=16, help='batch size')
parser.add_argument('--model', type=str, default='HRED', help='model to be trained')
parser.add_argument('--utter_n_layer', type=int, default=1, help='layer of encoder')
parser.add_argument('--utter_hidden', type=int, default=150,
help='utterance encoder hidden size')
parser.add_argument('--context_hidden', type=int, default=150,
help='context encoder hidden size')
parser.add_argument('--decoder_hidden', type=int, default=150,
help='decoder hidden size')
parser.add_argument('--seed', type=int, default=30,
help='random seed')
parser.add_argument('--embed_size', type=int, default=200,
help='embedding layer size')
parser.add_argument('--src_vocab', type=str, default=None, help='src vocabulary')
parser.add_argument('--tgt_vocab', type=str, default=None, help='tgt vocabulary')
parser.add_argument('--maxlen', type=int, default=50, help='the maxlen of the utterance')
parser.add_argument('--pred', type=str, default=None,
help='the csv file save the output')
parser.add_argument('--hierarchical', type=int, default=1, help='whether hierarchical architecture')
parser.add_argument('--tgt_maxlen', type=int, default=50, help='target sequence maxlen')
parser.add_argument('--user_embed_size', type=int, default=10, help='user embed size')
parser.add_argument('--cf', type=int, default=0, help='whether have the classification')
parser.add_argument('--dataset', type=str, default='ubuntu')
parser.add_argument('--position_embed_size', type=int, default=30)
parser.add_argument('--graph', type=int, default=0)
parser.add_argument('--test_graph', type=str, default=None)
parser.add_argument('--plus', type=int, default=0, help='the same as the one in train.py')
parser.add_argument('--contextrnn', dest='contextrnn', action='store_true')
parser.add_argument('--no-contextrnn', dest='contextrnn', action='store_false')
parser.add_argument('--context_threshold', type=int, default=2)
args = parser.parse_args()
# show the parameters
print('Parameters:')
print(args)
# set random seed
random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
# translate
args_dict = vars(args)
translate(**args_dict)