-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathcontext_val.py
88 lines (77 loc) · 3.42 KB
/
context_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import sys
import numpy as np
from datetime import datetime
import torch
import multiprocessing
import torch
# Set global values so are being modified.
best_validation_loss = sys.float_info.max
best_accuracy = 0.0
saving_threshold = 1.02
def context_val(epoch, epoch_fn, opt, val_loader, discriminator, context_fn, logger, loss_fn=None, fcn=None, coAttn=None):
global best_validation_loss, best_accuracy, saving_threshold
# freeze the weights from the ARC and set it to eval.
for param in discriminator.parameters():
param.requires_grad = False
discriminator.eval()
if opt.cuda:
discriminator.cuda()
# freeze the weights from the fcn and set it to eval.
if opt.apply_wrn:
for param in fcn.parameters():
param.requires_grad = False
fcn.eval()
if opt.cuda:
fcn.cuda()
# set all gradient to True
if opt.use_coAttn:
for param in coAttn.parameters():
param.requires_grad = False
coAttn.eval()
if opt.cuda:
coAttn.cuda()
# set all gradients to true in the context model.
for param in context_fn.parameters():
param.requires_grad = False
context_fn.eval() # Set to train the naive/full-context model
if opt.cuda:
context_fn.cuda()
val_epoch = 0
val_acc_epoch = []
val_loss_epoch = []
start_time = datetime.now()
while val_epoch < opt.val_num_batches:
val_epoch += 1
if opt.apply_wrn:
val_acc, val_loss = epoch_fn(opt=opt, loss_fn=loss_fn,
discriminator=discriminator,
data_loader=val_loader,
model_fn=context_fn,
fcn=fcn, coAttn=coAttn)
else:
val_acc, val_loss = epoch_fn(opt=opt, loss_fn=loss_fn,
discriminator=discriminator,
data_loader=val_loader,
model_fn=context_fn, coAttn=coAttn)
val_acc_epoch.append(np.mean(val_acc))
val_loss_epoch.append(np.mean(val_loss))
time_elapsed = datetime.now() - start_time
val_acc_epoch = np.mean(val_acc_epoch)
val_loss_epoch = np.mean(val_loss_epoch)
print ("====" * 20, "\n", "[" + multiprocessing.current_process().name + "]" + \
"epoch: ", epoch, ", validation loss: ", val_loss_epoch \
, ", validation accuracy: ", val_acc_epoch, ", time: ", \
time_elapsed.seconds, "s:", time_elapsed.microseconds / 1000, "ms\n", "====" * 20)
logger.log_value('context_val_loss', val_loss_epoch)
logger.log_value('context_val_acc', val_acc_epoch)
is_model_saved = False
if best_accuracy < (saving_threshold * val_acc_epoch):
print("[{}] Significantly improved validation loss from {} --> {}. accuracy from {} --> {}. Saving...".format(
multiprocessing.current_process().name, best_validation_loss, val_loss_epoch, best_accuracy, val_acc_epoch))
# Save the context model
torch.save(context_fn.state_dict(), opt.naive_full_save_path)
# Acc - loss values
best_validation_loss = val_loss_epoch
best_accuracy = val_acc_epoch
is_model_saved = True
return val_acc_epoch, val_loss_epoch, is_model_saved