-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_data_preparation.py
226 lines (177 loc) · 9.1 KB
/
1_data_preparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
This script for data preprocessing, in order to obtain the necessary prepared and normalized data
for different models. Each model (section) generates a .csv file.
The base data file needed as input is "data.csv", where all the information is contained
Sections:
1. MOST STABLE Eads/abs FOR 81 SURFACES
2. LEAST STABLE Eads/abs FOR 81 SURFACES
3. Eads/abs FOR ALL 390 SURFACES
4. TOP SITES Eads/abs FOR 130 SURFACES
"""
# Import libraries
import pandas as pd
from pandas import DataFrame
import numpy as np
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
n_rand = 95
# Import and prepare 'ElementData' database
from Elementdata import ElementData
elemdatabase = ElementData()
element_symbols = ["Zr","Zn","Y","Ti","Tc","Sc","Ru","Re","Os","Hf","Co","Cd","Rh",\
"Pt","Pd","Ni","Ir","Cu","Au","Ag","W","V","Ta","Nb","Mo","Fe","Cr"]
atomic_numbers = [elemdatabase.elementnr[symbol] for symbol in element_symbols]
valence_e = [elemdatabase.valenceelectrons[symbol] for symbol in element_symbols]
element_period = [elemdatabase.elementperiod[symbol] for symbol in element_symbols]
element_weight = [elemdatabase.elementweight[symbol] for symbol in element_symbols]
covalent_radius = [elemdatabase.CovalentRadius[symbol] for symbol in element_symbols]
ENPauling = [elemdatabase.ElectroNegativityPauling[symbol] for symbol in element_symbols]
ENAllred = [elemdatabase.ElectroNegativityAllredRochow[symbol] for symbol in element_symbols]
elementdata = pd.DataFrame({
"AS": element_symbols,
"Atomic Number": atomic_numbers,
"Valence Electrons": valence_e,
"Element Period": element_period,
"Element Weight": element_weight,
"Covalent Radius": covalent_radius,
"EN Pauling": ENPauling,
"EN Allred": ENAllred
})
# Import data
data_csv = pd.read_csv("sites.csv", sep=';', dtype={'MI': str})
data = pd.merge(data_csv, elementdata, on='AS', how='left')
# Replace labels in the 'MI' column
data['MI'] = data['MI'].replace({'0001': '001', '1010': '011', '1120': '111'})
# Choose model
print("Choose csv file to generate:")
print(" MS - Most stable Eads/abs for 81 surfaces")
print(" LS - Least stable Eads/abs for 81 surfaces")
print(" ALL - Eads/abs for all 390 surfaces")
print(" TOPS - only top sites' Eads/abs (130 surfaces)")
print("")
model_input = input("Enter: 'MS', 'LS', 'ALL', 'TOPS':")
################################################
# 1. MOST STABLE Eads/abs FOR 81 SURFACES
# - Generates: 'normalized_data_MS.csv'
################################################
if model_input == "MS":
# Create a boolean mask to identify the rows to keep
mask = data.groupby(['AS', 'MI'])['E'].transform(max) == data['E']
filtered_data = data[mask]
# Move the column "E" to the end
columns = [col for col in filtered_data.columns if col != 'E'] + ['E']
filtered_data = filtered_data[columns]
data = filtered_data
# Remove these columns
columns = ["AS", "MI", "site"]
data.drop(columns=columns, axis=1, inplace=True)
# Energy values must be negative
data['E'] = data['E'] * -1
# Enconding categorical features as vectors
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
data = ct.fit_transform(data) # Enconding categorical features as vectors.
data = DataFrame(data)
data.columns = ["bcc", "fcc", "hcp", "Interatomic dist","nd", "CN sur", "Ed", "Edw", "Eu", "SE", "WF", "CN ads", \
"Atomic n.", "Valence el.", "Element period", "Element weight", "Covalent Radius", "EN Pauling", "EN Allred", "E"]
pd.set_option("display.max_columns", None)
# Normalize all parameters except E
features_to_normalize = data.columns.difference(['E']) # Exclude target variable column
normalization_params = {}
for feature in features_to_normalize:
min_value = data[feature].min()
max_value = data[feature].max()
normalization_params[feature] = {'min': min_value, 'max': max_value}
data[feature] = (data[feature] - min_value) / (max_value - min_value)
# Save to csv file
data.to_csv('./data_files/normalized_data_MS.csv', index=False)
################################################
# 2. LEAST STABLE Eads/abs FOR 81 SURFACES
# - Generates: 'normalized_data_LS.csv'
################################################
if model_input == "LS":
# Create a boolean mask to identify the rows to keep
mask = data.groupby(['AS', 'MI'])['E'].transform(min) == data['E']
filtered_data = data[mask]
# Move the column "E" to the end
columns = [col for col in filtered_data.columns if col != 'E'] + ['E']
filtered_data = filtered_data[columns]
data = filtered_data
# Remove these columns
columns = ["AS", "MI", "site"]
data.drop(columns=columns, axis=1, inplace=True)
# Energy values must be negative
data['E'] = data['E'] * -1
# Enconding categorical features as vectors
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
data = ct.fit_transform(data) # Enconding categorical features as vectors.
data = DataFrame(data)
data.columns = ["bcc", "fcc", "hcp", "Interatomic dist","nd", "CN sur", "Ed", "Edw", "Eu", "SE", "WF", "CN ads", \
"Atomic n.", "Valence el.", "Element period", "Element weight", "Covalent Radius", "EN Pauling", "EN Allred", "E"]
pd.set_option("display.max_columns", None)
# Normalize all parameters except E
features_to_normalize = data.columns.difference(['E']) # Exclude target variable column
normalization_params = {}
for feature in features_to_normalize:
min_value = data[feature].min()
max_value = data[feature].max()
normalization_params[feature] = {'min': min_value, 'max': max_value}
data[feature] = (data[feature] - min_value) / (max_value - min_value)
# Save to csv file
data.to_csv('./data_files/normalized_data_LS.csv', index=False)
################################################
# 3. Eads/abs FOR ALL 390 SURFACES
# - Generates: 'normalized_data_sites.csv'
################################################
if model_input == "ALL":
# Remove these columns
columns = ["AS", "MI", "site"]
data.drop(columns=columns, axis=1, inplace=True)
# Energy values must be negative
data['E'] = data['E'] * -1
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
data = ct.fit_transform(data)
data = DataFrame(data)
data.columns = ["bcc", "fcc", "hcp", "Interatomic dist", "nd", "cn sur", "Ed", "Edw", "Eu", "SE", "WF", "CN", \
"E", "atomic n", "valence e", "element period", "element weight", "covalent r", "EN Pauling", "EN Allred"]
pd.set_option("display.max_columns", None)
# Move the column "E" to the end
columns = [col for col in data.columns if col != 'E'] + ['E']
data = data[columns]
# Normalization
features_to_normalize = data.columns.difference(['E']) # Exclude target variable column
normalization_params = {}
for feature in features_to_normalize:
min_value = data[feature].min()
max_value = data[feature].max()
normalization_params[feature] = {'min': min_value, 'max': max_value}
data[feature] = (data[feature] - min_value) / (max_value - min_value)
# Save to csv file
data.to_csv('./data_files/normalized_data_sites.csv', index=False)
################################################
# 4. TOP SITES Eads/abs FOR 130 SURFACES
# - Generates: 'normalized_data_tops.csv'
################################################
if model_input == "TOPS":
data_tops = data[data['site'].isin(['ads t', 'ads top', 'abs t', 'abs top'])]
columns = [0,3,13]
data_tops.drop(data_tops.columns[columns],axis=1,inplace=True)
data_tops['E'] = data_tops['E'] * -1
ct = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
data = ct.fit_transform(data_tops)
data = DataFrame(data)
data.columns = ["bcc", "fcc", "hcp", "Interatomic dist", "nd", "cn sur", "Ed", "Edw", "Eu", "SE", "WF", "CN", \
"E", "atomic n", "valence e", "element period", "element weight", "covalent r", "EN Pauling", "EN Allred"]
pd.set_option("display.max_columns", None)
# Move the column "E" to the end
columns = [col for col in data.columns if col != 'E'] + ['E']
data = data[columns]
# Normalization
features_to_normalize = data.columns.difference(['E']) # Exclude target variable column
normalization_params = {}
for feature in features_to_normalize:
min_value = data[feature].min()
max_value = data[feature].max()
normalization_params[feature] = {'min': min_value, 'max': max_value}
data[feature] = (data[feature] - min_value) / (max_value - min_value)
# Save to csv file
data.to_csv('./data_files/normalized_data_tops.csv', index=False)