Skip to content

Commit ad5b8e8

Browse files
committed
Update README.md
1 parent fc67056 commit ad5b8e8

File tree

1 file changed

+24
-9
lines changed

1 file changed

+24
-9
lines changed

README.md

+24-9
Original file line numberDiff line numberDiff line change
@@ -95,7 +95,7 @@ Course materials for weekly Python/Data science class in Hong Kong, partnered wi
9595
- Introduction to Python Class Objects
9696
- Pandas Basics with Case study
9797
##### Homework:
98-
- Flight Delay Dataset: Create your own tables by Pandas
98+
- Flight Delay Dataset: Create your own tables with Pandas
9999
##### Resources
100100
- [10 mins of Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html)
101101
- [Pandas CheatSheet](https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf)
@@ -280,8 +280,13 @@ https://seaborn.pydata.org): Another great package to create beautiful charts
280280
#### Web Scraping
281281
- [Requests](https://requests.readthedocs.io/en/master/) documentation
282282
- [Beautiful Soup](https://www.crummy.com/software/BeautifulSoup/bs4/doc/) documentation
283+
- [Selenium] https://selenium-python.readthedocs.io
284+
- [Scrapy](https://scrapy.org)
283285
---
284286
#### Basic Linear Algebra, Statistics and Calculus
287+
- [Algebra & Calculus Refresher](https://stanford.edu/~shervine/teaching/cs-229/refresher-algebra-calculus)
288+
- [Statistics Refresher](https://stanford.edu/~shervine/teaching/cs-229/refresher-probabilities-statistics)
289+
- [Algebra & Calculus Review](http://cs229.stanford.edu/section/cs229-linalg.pdf)
285290
---
286291
#### Loss function
287292
- (Optional) [CS229 notes](http://cs229.stanford.edu/extra-notes/loss-functions.pdf) of loss functions
@@ -297,27 +302,37 @@ https://seaborn.pydata.org): Another great package to create beautiful charts
297302
- [Tutorial](https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93) on Support Vector Machine. Read this for SVM basic
298303
- [Lecture by Professor Patrick Winston](https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-16-learning-support-vector-machines/) with Math
299304
##### Decision Tree
300-
305+
- [Information Gain](https://homes.cs.washington.edu/~shapiro/EE596/notes/InfoGain.pdf)
306+
- [Decision Tree Intro From ESL](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) Chapter 9
301307
##### Ensemble Learning
302-
308+
- [Random Forest Intro From ESL](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) Chapter 15
309+
- [Sklearn Random Forest Implementaion](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)
310+
- [XGboost](https://xgboost.readthedocs.io/en/latest/)
303311
##### kNN
304-
312+
- [kNN Sklearn implementation](https://scikit-learn.org/stable/modules/neighbors.html#classification)
305313
---
306314
#### Unsupervised Learning
307-
315+
-[Unsupervised Learning Overview](https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning)
316+
- [Unsupervised Intro From ESL](https://web.stanford.edu/~hastie/Papers/ESLII.pdf) Chapter 14
308317
##### K-Means
309-
318+
- Elbow for K-Means: [link1](https://medium.com/@cmukesh8688/silhouette-analysis-in-k-means-clustering-cefa9a7ad111), [link2](https://stackoverflow.com/questions/59106417/what-would-be-the-best-k-for-this-kmeans-clustering-elbow-point-plot)
319+
- Example using K-means for [customer segmenation](https://towardsdatascience.com/customer-segmentation-using-k-means-clustering-d33964f238c3)
310320
##### Dimensionality Reduction
311-
---
321+
- A very comprehensive study material on [SVD/PCA](https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf).
312322
#### Recommender System
313323
- [XLearn](https://xlearn-doc.readthedocs.io/en/latest/python_api/index.html) The library we used in class for RecSys
314324
- [Factorization Machine](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf) The FM paper by Rendle
315-
- (Optional) [Deep and Wide Learning]() The Deep Learning RecSys architecture by Google
325+
- (Optional) [Deep and Wide Learning](https://arxiv.org/pdf/1606.07792.pdf) The Deep Learning RecSys architecture by Google
316326
---
317327
#### Natural Language Processing
328+
- NLTK: [official website](https://www.nltk.org)
329+
- Word2vec visualization: [link](https://projector.tensorflow.org)
330+
- [Word2vec Overview](https://jalammar.github.io/illustrated-word2vec/)
331+
- Jibra (Chinese NLP): [github](https://github.com/fxsjy/jieba)
318332
---
319333
#### Reinforcement Learning
320334
---
321335
#### Deep Learning
322-
336+
- [Convolutional Neural Network CheatSheet](https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks)
337+
- [Visualizing and Understanding Convolutional Networks](https://arxiv.org/pdf/1311.2901.pdf)
323338

0 commit comments

Comments
 (0)