@@ -95,7 +95,7 @@ Course materials for weekly Python/Data science class in Hong Kong, partnered wi
95
95
- Introduction to Python Class Objects
96
96
- Pandas Basics with Case study
97
97
##### Homework:
98
- - Flight Delay Dataset: Create your own tables by Pandas
98
+ - Flight Delay Dataset: Create your own tables with Pandas
99
99
##### Resources
100
100
- [ 10 mins of Pandas] ( https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html )
101
101
- [ Pandas CheatSheet] ( https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf )
@@ -280,8 +280,13 @@ https://seaborn.pydata.org): Another great package to create beautiful charts
280
280
#### Web Scraping
281
281
- [ Requests] ( https://requests.readthedocs.io/en/master/ ) documentation
282
282
- [ Beautiful Soup] ( https://www.crummy.com/software/BeautifulSoup/bs4/doc/ ) documentation
283
+ - [ Selenium] https://selenium-python.readthedocs.io
284
+ - [ Scrapy] ( https://scrapy.org )
283
285
---
284
286
#### Basic Linear Algebra, Statistics and Calculus
287
+ - [ Algebra & Calculus Refresher] ( https://stanford.edu/~shervine/teaching/cs-229/refresher-algebra-calculus )
288
+ - [ Statistics Refresher] ( https://stanford.edu/~shervine/teaching/cs-229/refresher-probabilities-statistics )
289
+ - [ Algebra & Calculus Review] ( http://cs229.stanford.edu/section/cs229-linalg.pdf )
285
290
---
286
291
#### Loss function
287
292
- (Optional) [ CS229 notes] ( http://cs229.stanford.edu/extra-notes/loss-functions.pdf ) of loss functions
@@ -297,27 +302,37 @@ https://seaborn.pydata.org): Another great package to create beautiful charts
297
302
- [ Tutorial] ( https://blog.statsbot.co/support-vector-machines-tutorial-c1618e635e93 ) on Support Vector Machine. Read this for SVM basic
298
303
- [ Lecture by Professor Patrick Winston] ( https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-16-learning-support-vector-machines/ ) with Math
299
304
##### Decision Tree
300
-
305
+ - [ Information Gain] ( https://homes.cs.washington.edu/~shapiro/EE596/notes/InfoGain.pdf )
306
+ - [ Decision Tree Intro From ESL] ( https://web.stanford.edu/~hastie/Papers/ESLII.pdf ) Chapter 9
301
307
##### Ensemble Learning
302
-
308
+ - [ Random Forest Intro From ESL] ( https://web.stanford.edu/~hastie/Papers/ESLII.pdf ) Chapter 15
309
+ - [ Sklearn Random Forest Implementaion] ( https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html )
310
+ - [ XGboost] ( https://xgboost.readthedocs.io/en/latest/ )
303
311
##### kNN
304
-
312
+ - [ kNN Sklearn implementation ] ( https://scikit-learn.org/stable/modules/neighbors.html#classification )
305
313
---
306
314
#### Unsupervised Learning
307
-
315
+ -[ Unsupervised Learning Overview] ( https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-unsupervised-learning )
316
+ - [ Unsupervised Intro From ESL] ( https://web.stanford.edu/~hastie/Papers/ESLII.pdf ) Chapter 14
308
317
##### K-Means
309
-
318
+ - Elbow for K-Means: [ link1] ( https://medium.com/@cmukesh8688/silhouette-analysis-in-k-means-clustering-cefa9a7ad111 ) , [ link2] ( https://stackoverflow.com/questions/59106417/what-would-be-the-best-k-for-this-kmeans-clustering-elbow-point-plot )
319
+ - Example using K-means for [ customer segmenation] ( https://towardsdatascience.com/customer-segmentation-using-k-means-clustering-d33964f238c3 )
310
320
##### Dimensionality Reduction
311
- ---
321
+ - A very comprehensive study material on [ SVD/PCA ] ( https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf ) .
312
322
#### Recommender System
313
323
- [ XLearn] ( https://xlearn-doc.readthedocs.io/en/latest/python_api/index.html ) The library we used in class for RecSys
314
324
- [ Factorization Machine] ( https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf ) The FM paper by Rendle
315
- - (Optional) [ Deep and Wide Learning] ( ) The Deep Learning RecSys architecture by Google
325
+ - (Optional) [ Deep and Wide Learning] ( https://arxiv.org/pdf/1606.07792.pdf ) The Deep Learning RecSys architecture by Google
316
326
---
317
327
#### Natural Language Processing
328
+ - NLTK: [ official website] ( https://www.nltk.org )
329
+ - Word2vec visualization: [ link] ( https://projector.tensorflow.org )
330
+ - [ Word2vec Overview] ( https://jalammar.github.io/illustrated-word2vec/ )
331
+ - Jibra (Chinese NLP): [ github] ( https://github.com/fxsjy/jieba )
318
332
---
319
333
#### Reinforcement Learning
320
334
---
321
335
#### Deep Learning
322
-
336
+ - [ Convolutional Neural Network CheatSheet] ( https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks )
337
+ - [ Visualizing and Understanding Convolutional Networks] ( https://arxiv.org/pdf/1311.2901.pdf )
323
338
0 commit comments