-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiostats.py
77 lines (67 loc) · 2.35 KB
/
biostats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
from biosppy.signals import ecg
def hrv_metrics(rpeaks):
"""
Compute heart rate variability (HRV) metrics from ECG data.
Args:
- rpeaks: list of R-peak indices
Returns:
- dict with HRV metrics (mean RR interval, SDNN, NN50, pNN50, LF power, HF power, LF/HF ratio, heart rate)9
"""
sampling_rate = 200 # Hz
rr_intervals = np.diff(rpeaks) * (1000 / sampling_rate)
# Time-domain metrics
mean_rr = np.mean(rr_intervals)
sdnn = np.std(rr_intervals)
nn50 = np.sum(
np.abs(np.diff(rr_intervals)) > 50
) # Number of pairs of successive RR intervals > 50ms
pnn50 = (nn50 / len(rr_intervals)) * 100 if len(rr_intervals) > 0 else 0.0
nn20 = np.sum(
np.abs(np.diff(rr_intervals)) > 20
) # Number of pairs of successive RR intervals > 20ms
nn30 = np.sum(
np.abs(np.diff(rr_intervals)) > 30
) # Number of pairs of successive RR intervals > 30ms
pnn20 = (nn20 / len(rr_intervals)) * 100 if len(rr_intervals) > 0 else 0.0
pnn30 = (nn30 / len(rr_intervals)) * 100 if len(rr_intervals) > 0 else 0.0
# heart rate
heart_rate = 60000 / mean_rr
result = {
"metrics": {
"pnn50": pnn50,
"pnn30": pnn30,
"pnn20": pnn20,
"mean_rr": mean_rr,
"hr": heart_rate,
},
"start_interval": None,
"end_interval": None,
}
return result
def short_instance_stats(buffer_ecg, tsec=60):
"""
Compute HRV metrics from last tsec seconds of ECG data.
Args:
- buffer_ecg: list of ECG data points
- tsec: time window in seconds
Returns:
- dict with HRV metrics
"""
# TODO this can throw an error if the buffer_ecg is too small
ecg_signal = np.array([row[3] for row in buffer_ecg])
output = ecg.ecg(signal=ecg_signal, sampling_rate=200, show=False)
return hrv_metrics(output[2])
def long_instance_stats(buffer_ecg, tsec=60):
"""
Compute HRV metrics from last tsec seconds of ECG data.
Args:
- buffer_ecg: list of ECG data points
- tsec: time window in seconds
Returns:
- dict with HRV metrics
"""
# TODO edit to long form
ecg_signal = np.array([row[3] for row in buffer_ecg])
output = ecg.ecg(signal=ecg_signal, sampling_rate=200, show=False)
return hrv_metrics(output[2])