-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain_linear_infomin.py
85 lines (62 loc) · 2.59 KB
/
main_linear_infomin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
DDP training for Linear Probing
"""
from __future__ import print_function
import torch
import torch.nn as nn
import torch.multiprocessing as mp
from utils.infomin_test_options import TestOptions
from infomin.linear_trainer import LinearTrainer
from infomin.build_linear import build_linear
from infomin.build_backbone import build_model
from datasets.infomin_datasets import build_linear_loader
def main():
args = TestOptions().parse()
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
raise NotImplementedError('Currently only DDP training')
def main_worker(gpu, ngpus_per_node, args):
# initialize trainer and ddp environment
trainer = LinearTrainer(args)
trainer.init_ddp_environment(gpu, ngpus_per_node)
# build encoder and classifier
model, _ = build_model(args)
classifier = build_linear(args)
# build dataset
train_loader, val_loader, train_sampler = \
build_linear_loader(args, ngpus_per_node)
# build criterion and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(classifier.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
# load pre-trained ckpt for encoder
model = trainer.load_encoder_weights(model)
# wrap up models
model, classifier = trainer.wrap_up(model, classifier)
# check and resume a classifier
start_epoch = trainer.resume_model(classifier, optimizer)
# init tensorboard logger
trainer.init_tensorboard_logger()
# routine
for epoch in range(start_epoch, args.epochs + 1):
train_sampler.set_epoch(epoch)
trainer.adjust_learning_rate(optimizer, epoch)
outs = trainer.train(epoch, train_loader, model, classifier,
criterion, optimizer)
# log to tensorbard
trainer.logging(epoch, outs, optimizer.param_groups[0]['lr'], train=True)
# evaluation and logging
if args.rank % ngpus_per_node == 0:
outs = trainer.validate(epoch, val_loader, model,
classifier, criterion)
trainer.logging(epoch, outs, train=False)
# saving model
trainer.save(classifier, optimizer, epoch)
if __name__ == '__main__':
main()