|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "\n", |
| 8 | + "\n", |
| 9 | + "# GFN-ROM is a resolution-invariant method for MOR suitable for multifidelity applications.\n", |
| 10 | + "\n", |
| 11 | + "# For further details, see the [GFN repo](https://github.com/Oisin-M/GFN) and [GFN paper](https://arxiv.org/abs/2406.03569)." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": null, |
| 17 | + "metadata": { |
| 18 | + "id": "CtOVuaD1oJGf" |
| 19 | + }, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# Install PyTorch\n", |
| 23 | + "try:\n", |
| 24 | + " import torch\n", |
| 25 | + " from torch import nn\n", |
| 26 | + "except ImportError:\n", |
| 27 | + " !pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118\n", |
| 28 | + " import torch\n", |
| 29 | + " from torch import nn" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "metadata": { |
| 36 | + "id": "rXVVqRjT0CHr" |
| 37 | + }, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# Clone and import gfn-rom\n", |
| 41 | + "import sys\n", |
| 42 | + "try:\n", |
| 43 | + " from gfn_rom import pde, defaults, preprocessing, initialisation, gfn_rom, train, test, plotting\n", |
| 44 | + "except ImportError:\n", |
| 45 | + " try:\n", |
| 46 | + " sys.path.append('GFN')\n", |
| 47 | + " from gfn_rom import pde, defaults, preprocessing, initialisation, gfn_rom, train, test, plotting\n", |
| 48 | + " except ImportError:\n", |
| 49 | + " !git clone https://github.com/Oisin-M/GFN.git\n", |
| 50 | + " from gfn_rom import pde, defaults, preprocessing, initialisation, gfn_rom, train, test, plotting\n", |
| 51 | + "\n", |
| 52 | + "import numpy as np\n", |
| 53 | + "import scipy" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "code", |
| 58 | + "execution_count": null, |
| 59 | + "metadata": {}, |
| 60 | + "outputs": [], |
| 61 | + "source": [ |
| 62 | + "pname = 'advection'\n", |
| 63 | + "\n", |
| 64 | + "# training and test fidelities\n", |
| 65 | + "train_fidelities = ['3967']\n", |
| 66 | + "test_fidelities = ['3967']\n", |
| 67 | + "\n", |
| 68 | + "# Naming convention for saving the model\n", |
| 69 | + "save_name = ''.join(train_fidelities)" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "dev = initialisation.set_device()\n", |
| 79 | + "initialisation.set_precision(defaults.precision)\n", |
| 80 | + "initialisation.create_directories()\n", |
| 81 | + "params = torch.tensor(pde.params(pname)).to(dev)\n", |
| 82 | + "np.random.seed(defaults.split_seed)\n", |
| 83 | + "train_trajs, test_trajs = preprocessing.train_test_split(params, len(train_fidelities), defaults.rate)\n", |
| 84 | + "\n", |
| 85 | + "xs=scipy.io.loadmat(\"../../dataset/advection_unstructured.mat\")['xx'][:,0]\n", |
| 86 | + "ys=scipy.io.loadmat(\"../../dataset/advection_unstructured.mat\")['yy'][:,0]\n", |
| 87 | + "meshes_train = [np.vstack([xs,ys]).T]\n", |
| 88 | + "meshes_test = meshes_train\n", |
| 89 | + "def get_scaled_data(fname=\"../../dataset/advection_unstructured.mat\"):\n", |
| 90 | + " U = scipy.io.loadmat(fname)['U']\n", |
| 91 | + " U_orig = torch.tensor(U)\n", |
| 92 | + " scale, U_sc = preprocessing.scaling(U_orig)\n", |
| 93 | + " print('reconstruction error', ((U_orig - preprocessing.undo_scaling(U_sc, scale))**2).sum())\n", |
| 94 | + " return scale, U_sc\n", |
| 95 | + "sols_train = [get_scaled_data()[1]]\n", |
| 96 | + "sols_test = [get_scaled_data()]\n", |
| 97 | + "\n", |
| 98 | + "sols_train = [x.to(dev) for x in sols_train]\n", |
| 99 | + "initialisation.set_seed(defaults.seed)\n", |
| 100 | + "start_mesh = sorted(meshes_train, key=lambda x: x.shape[0])[-1]\n", |
| 101 | + "update_master = defaults.mode == 'adapt'" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "model = gfn_rom.GFN_ROM(start_mesh, defaults.N_basis_factor, params.shape[1], defaults.act, defaults.ae_sizes, defaults.mapper_sizes).to(dev)\n", |
| 111 | + "print(model.GFN.mesh_m.shape)\n", |
| 112 | + "\n", |
| 113 | + "# We do all of the possible expansions apriori in the preadaptive case\n", |
| 114 | + "# This is a preprocessing step so we don't do any speedup steps here\n", |
| 115 | + "if defaults.mode=='preadapt':\n", |
| 116 | + " count = np.inf\n", |
| 117 | + " while count!=0:\n", |
| 118 | + " count = 0\n", |
| 119 | + " for mesh_n in meshes_train:\n", |
| 120 | + " n_exp, n_agg = model.GFN.reshape_weights(mesh_n, update_master=True)\n", |
| 121 | + " count += n_exp\n", |
| 122 | + " print(model.GFN.mesh_m.shape)" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": null, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "if not update_master:\n", |
| 132 | + " opt = torch.optim.Adam(model.parameters(), lr=defaults.lr, weight_decay=defaults.lambda_)\n", |
| 133 | + "else:\n", |
| 134 | + " # Cannot update GFN parameters using Adam anymore since we use adaptive method\n", |
| 135 | + " # and weights can change shape at each iteration\n", |
| 136 | + " # Similarly, cannot use momentum\n", |
| 137 | + " opt = torch.optim.SGD(model.parameters(), lr=defaults.lr, weight_decay=defaults.lambda_)" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [], |
| 145 | + "source": [ |
| 146 | + "try:\n", |
| 147 | + " model.load_state_dict(torch.load(\"models/best_model_\"+save_name+\".pt\"))\n", |
| 148 | + " print(\"Loading saved network\")\n", |
| 149 | + "except FileNotFoundError:\n", |
| 150 | + " print(\"Training network\")\n", |
| 151 | + " train_losses, test_losses = train.train(model, opt, meshes_train, sols_train, params, train_trajs, test_trajs, update_master, defaults.epochs, defaults.mapper_weight, save_name)\n", |
| 152 | + " model.load_state_dict(torch.load(\"models/best_model_\"+save_name+\".pt\"))\n", |
| 153 | + " plotting.plot_losses(train_losses, test_losses, save_name)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "for i in range(len(test_fidelities)):\n", |
| 163 | + " \n", |
| 164 | + " print('-'*40)\n", |
| 165 | + " print(f'TEST MESH: {test_fidelities[i]}')\n", |
| 166 | + " \n", |
| 167 | + " scale, U = sols_test[i]\n", |
| 168 | + " U = U.to('cpu')\n", |
| 169 | + " mesh = meshes_test[i]\n", |
| 170 | + "\n", |
| 171 | + " model.eval()\n", |
| 172 | + " model.to('cpu')\n", |
| 173 | + " \n", |
| 174 | + " Z, Z_net, x_enc, x_map = test.evaluate_results(model, mesh, U, scale, params.to('cpu'))\n", |
| 175 | + " error = abs(Z - Z_net)\n", |
| 176 | + " error, rel_error = test.print_results(Z, Z_net, x_enc, x_map)\n", |
| 177 | + "\n", |
| 178 | + " np.savetxt('errors/relative_errors_train'+save_name+'_test'+test_fidelities[i]+'.txt', [max(rel_error), sum(rel_error)/len(rel_error), min(rel_error)])\n", |
| 179 | + " print()" |
| 180 | + ] |
| 181 | + } |
| 182 | + ], |
| 183 | + "metadata": { |
| 184 | + "accelerator": "GPU", |
| 185 | + "colab": { |
| 186 | + "authorship_tag": "ABX9TyPxps/Yo6EhPBLUacBJicyu", |
| 187 | + "gpuType": "T4", |
| 188 | + "include_colab_link": true, |
| 189 | + "provenance": [] |
| 190 | + }, |
| 191 | + "kernelspec": { |
| 192 | + "display_name": "Python 3 (ipykernel)", |
| 193 | + "language": "python", |
| 194 | + "name": "python3" |
| 195 | + }, |
| 196 | + "language_info": { |
| 197 | + "codemirror_mode": { |
| 198 | + "name": "ipython", |
| 199 | + "version": 3 |
| 200 | + }, |
| 201 | + "file_extension": ".py", |
| 202 | + "mimetype": "text/x-python", |
| 203 | + "name": "python", |
| 204 | + "nbconvert_exporter": "python", |
| 205 | + "pygments_lexer": "ipython3", |
| 206 | + "version": "3.10.14" |
| 207 | + } |
| 208 | + }, |
| 209 | + "nbformat": 4, |
| 210 | + "nbformat_minor": 4 |
| 211 | +} |
0 commit comments