-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
202 lines (160 loc) · 6.75 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score, learning_curve
from sklearn.metrics import (
mean_absolute_error,
mean_squared_error,
r2_score,
explained_variance_score,
mean_absolute_percentage_error,
confusion_matrix,
ConfusionMatrixDisplay
)
from sklearn.ensemble import RandomForestRegressor
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
def data_preprocessing(file_path='./cardekho.csv', current_year=2024):
data = pd.read_csv(file_path)
data = data.dropna()
scaler = MinMaxScaler()
data[['mileage(km/ltr/kg)', 'engine']] = scaler.fit_transform(data[['mileage(km/ltr/kg)', 'engine']])
data['selling_price'] = np.log1p(data['selling_price'])
data = pd.get_dummies(data, columns=['fuel', 'transmission', 'seller_type', 'owner'], drop_first=True)
data['brand'] = data['name'].apply(lambda x: x.split()[0])
data['model'] = data['name'].apply(lambda x: ' '.join(x.split()[1:]))
data = pd.get_dummies(data, columns=['brand'], drop_first=True)
vectorizer = TfidfVectorizer(max_features=50)
tfidf_matrix = vectorizer.fit_transform(data['model'])
tfidf_df = pd.DataFrame(tfidf_matrix.toarray(), columns=vectorizer.get_feature_names_out())
data = pd.concat([data.reset_index(drop=True), tfidf_df.reset_index(drop=True)], axis=1)
data['original_name'] = data['name']
data['original_model'] = data['model']
data = data.drop(['name', 'model'], axis=1)
Q1 = data['selling_price'].quantile(0.25)
Q3 = data['selling_price'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
data = data[(data['selling_price'] >= lower_bound) & (data['selling_price'] <= upper_bound)]
data['car_age'] = current_year - data['year']
data = data.apply(lambda col: pd.to_numeric(col, errors='coerce') if col.dtype == 'object' else col)
data.fillna(data.median(), inplace=True)
data.to_csv('cleaned_cardekho.csv', index=False)
return data
def plot_learning_curve(estimator, X, y):
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=5, scoring='r2', n_jobs=-1, train_sizes=np.linspace(0.1, 1.0, 10)
)
train_scores_mean = np.mean(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
plt.figure(figsize=(10, 6))
plt.plot(train_sizes, train_scores_mean, label='Training Score')
plt.plot(train_sizes, test_scores_mean, label='Validation Score')
plt.title('Learning Curve')
plt.xlabel('Training Examples')
plt.ylabel('R2 Score')
plt.legend()
plt.grid()
plt.savefig('learning_curve.png')
plt.show()
def train_and_save_model(data):
X = data.drop(['selling_price'], axis=1)
y = data['selling_price']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
param_grid = {
'n_estimators': [100, 300, 500],
'max_depth': [10, 20, 30, None],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 5],
'max_features': ['auto', 'sqrt', 'log2'],
'bootstrap': [True, False]
}
grid_search = GridSearchCV(
estimator=RandomForestRegressor(random_state=42),
param_grid=param_grid,
cv=4,
scoring='r2',
verbose=1,
n_jobs=-1
)
grid_search.fit(X_train, y_train)
best_model = grid_search.best_estimator_
# Evaluate model performance
y_pred = best_model.predict(X_test)
metrics = {
"MAE": mean_absolute_error(y_test, y_pred),
"MSE": mean_squared_error(y_test, y_pred),
"R2": r2_score(y_test, y_pred),
"Explained Variance": explained_variance_score(y_test, y_pred),
"MAPE": mean_absolute_percentage_error(y_test, y_pred)
}
print("Best Hyperparameters:", grid_search.best_params_)
print("\nModel Performance (Test Set):")
for metric, value in metrics.items():
print(f"{metric}: {value:.4f}")
feature_importances = pd.Series(best_model.feature_importances_, index=X.columns)
feature_importances.sort_values(ascending=False).head(10).plot(kind='bar', figsize=(12, 6), color='skyblue')
plt.title('Feature Importance Ranking')
plt.ylabel('Importance')
plt.xlabel('Features')
plt.savefig('feature_importance.png')
plt.show()
cv_scores = cross_val_score(best_model, X, y, cv=5, scoring='r2')
print("\nCross-Validation R2 Scores:", cv_scores)
print("Mean R2 Score:", np.mean(cv_scores))
plt.figure(figsize=(12, 10))
sns.boxplot(data=cv_scores, color='cyan')
plt.title('Cross-Validation R2 Score Distribution')
plt.savefig('cv_score_distribution.png')
plt.show()
plt.figure(figsize=(12, 10))
corr_matrix = X.corr()
sns.heatmap(corr_matrix, annot=False, cmap='coolwarm', linewidths=0.5)
plt.title('Feature Correlation Heatmap')
plt.tight_layout()
plt.savefig('feature_correlation.png')
plt.show()
error_distribution = y_test - y_pred
plt.figure(figsize=(10, 6))
sns.histplot(error_distribution, kde=True, color='red')
plt.title('Prediction Error Distribution')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.savefig('prediction_error_distribution.png')
plt.show()
plt.figure(figsize=(10, 6))
sns.kdeplot(y_test, label='Actual', fill=True, alpha=0.5)
sns.kdeplot(y_pred, label='Predicted', fill=True, alpha=0.5)
plt.title('Price Distribution: Actual vs Predicted')
plt.xlabel('Log Selling Price')
plt.ylabel('Density')
plt.legend()
plt.savefig('price_distribution.png')
plt.show()
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred, alpha=0.5, color='blue')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel('True Values')
plt.ylabel('Predicted Values')
plt.title('True vs Predicted Values')
plt.savefig('true_vs_predicted.png')
plt.show()
y_test_class = (y_test > y_test.median()).astype(int)
y_pred_class = (y_pred > y_test.median()).astype(int)
cm = confusion_matrix(y_test_class, y_pred_class)
disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Below Median', 'Above Median'])
disp.plot(cmap='Blues')
plt.title('Confusion Matrix')
plt.savefig('confusion_matrix.png')
plt.show()
with open('trained_model.pkl', 'wb') as f:
pickle.dump(best_model, f)
with open('feature_columns.pkl', 'wb') as f:
pickle.dump(X.columns.tolist(), f)
return best_model, X.columns.tolist()
if __name__ == "__main__":
data = data_preprocessing(file_path='cardekho.csv')
train_and_save_model(data)