Skip to content

Commit d382fc7

Browse files
committed
writing out the MMEs
1 parent 2f26384 commit d382fc7

File tree

3 files changed

+51
-9
lines changed

3 files changed

+51
-9
lines changed

bibliography/biostatistics.bib

+5-9
Original file line numberDiff line numberDiff line change
@@ -57,13 +57,9 @@ @article{meuwissen2001prediction
5757
year={2001},
5858
publisher={Genetics Soc America}
5959
}
60-
@article{wolf2015genome,
61-
title={Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate},
62-
author={Wolf, Zena T and Brand, Harrison A and Shaffer, John R and Leslie, Elizabeth J and Arzi, Boaz and Willet, Cali E and Cox, Timothy C and McHenry, Toby and Narayan, Nicole and Feingold, Eleanor and others},
63-
journal={PLoS genetics},
64-
volume={11},
65-
number={3},
66-
pages={e1005059},
67-
year={2015},
68-
publisher={Public Library of Science}
60+
@book{mrode2014linear,
61+
title={Linear models for the prediction of animal breeding values},
62+
author={Mrode, Raphael A},
63+
year={2014},
64+
publisher={Cabi}
6965
}

r_notebooks/mixed_models.Rmd

+23
Original file line numberDiff line numberDiff line change
@@ -73,6 +73,29 @@ where:
7373

7474
Estimates for the parameters in the mixed model above are obtained by solving the **mixed model equations** (MME, @henderson1950estimaton). MME are set up by expanding the equation $\left(\mathbf{X'+Z'}\right) \cdot \left(\mathbf{Xb}+ \mathbf{Zu} \right) = \left( \mathbf{X'+Z'} \right) \cdot \mathbf{y}$, and then adding to the random term **u** the corresponding covariance matrix:
7575

76+
$$
77+
\left[
78+
\begin{array}{cc}
79+
\mathbf{X'X} & \mathbf{X'Z} \\
80+
\mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{K^{-1}\cdot \frac{\sigma_e^2}{\sigma_u^2}}
81+
\end{array}
82+
\right] \cdot
83+
\left[
84+
\begin{array}{c}
85+
\mathbf{b}\\
86+
\mathbf{u}
87+
\end{array}
88+
\right]
89+
= \left[
90+
\begin{array}{c}
91+
\mathbf{X'y}\\
92+
\mathbf{Z'y}
93+
\end{array}
94+
\right]
95+
$$
96+
97+
**MMEs** are a very powerful statistical/mathematical tool, that can be extended in a very flexible way to a very large number of different (and increasingly) models (see for instance @mrode2014linear)
98+
7699
### Mixed models: an illustration in R
77100

78101
We take data on the yield of 41 potato lines (`DT_example` dataset) from different environments (combination of location and year).

r_notebooks/mixed_models.md

+23
Original file line numberDiff line numberDiff line change
@@ -53,6 +53,29 @@ where:
5353

5454
Estimates for the parameters in the mixed model above are obtained by solving the **mixed model equations** (MME, @henderson1950estimaton). MME are set up by expanding the equation $\left(\mathbf{X'+Z'}\right) \cdot \left(\mathbf{Xb}+ \mathbf{Zu} \right) = \left( \mathbf{X'+Z'} \right) \cdot \mathbf{y}$, and then adding to the random term **u** the corresponding covariance matrix:
5555

56+
$$
57+
\left[
58+
\begin{array}{cc}
59+
\mathbf{X'X} & \mathbf{X'Z} \\
60+
\mathbf{Z'X} & \mathbf{Z'Z} + \mathbf{K^{-1}\cdot \frac{\sigma_e^2}{\sigma_u^2}}
61+
\end{array}
62+
\right] \cdot
63+
\left[
64+
\begin{array}{c}
65+
\mathbf{b}\\
66+
\mathbf{u}
67+
\end{array}
68+
\right]
69+
= \left[
70+
\begin{array}{c}
71+
\mathbf{X'y}\\
72+
\mathbf{Z'y}
73+
\end{array}
74+
\right]
75+
$$
76+
77+
**MMEs** are a very powerful statistical/mathematical tool, that can be extended in a very flexible way to a very large number of different (and increasingly) models (see for instance @mrode2014linear)
78+
5679
### Mixed models: an illustration in R
5780

5881
We take data on the yield of 41 potato lines (`DT_example` dataset) from different environments (combination of location and year).

0 commit comments

Comments
 (0)