-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrainers.py
687 lines (558 loc) · 27.2 KB
/
trainers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
"""
This class contains the abstraction interface to customize runners.
For the training loop, we use the engine logic from pytorch-ignite
Check experiments for examples of experiment json files
Examples using gradual unfreezing and adaptation methods in general are adapted from
the NAACL 2019 tutorial on TRansfer Learning for NLP https://colab.research.google.com/drive/1iDHCYIrWswIKp-n-pOg69xLoZO09MEgf#scrollTo=GObQkkttljWv&forceEdit=true&offline=true&sandboxMode=true
"""
import inspect
import logging
import re
from abc import abstractmethod
from collections import defaultdict
from typing import Dict, List, Any, Union, Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OutputHandler, OptimizerParamsHandler, WeightsScalarHandler, WeightsHistHandler, \
GradsScalarHandler
from ignite.contrib.handlers.tqdm_logger import ProgressBar
from ignite.engine import Events
from ignite.engine.engine import Engine
from ignite.metrics import Loss, Metric, RunningAverage, MetricsLambda, Accuracy
from ignite.utils import convert_tensor
from transfer_nlp.loaders.loaders import DatasetSplits
from transfer_nlp.plugins.config import register_plugin
from transfer_nlp.plugins.regularizers import RegularizerABC
from transfer_nlp.plugins.trainer_abc import TrainerABC
logger = logging.getLogger(__name__)
# Tensorboard is used within PyTorch but is not a dependency, so it should be installed manually by users
TENSORBOARD = True
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
logger.debug("To use torch.utils.tensorboard, please install tensorboard>=1.14, and future")
TENSORBOARD = False
def set_seed_everywhere(seed: int, cuda: bool):
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
def _prepare_batch(batch: Union[Dict, List, Tuple], device=None, non_blocking: bool = False):
"""Prepare batch for training: pass to a device with options.
"""
if isinstance(batch, dict):
result = {key: convert_tensor(value, device=device, non_blocking=non_blocking) for key, value in batch.items()}
return result
elif isinstance(batch, tuple):
result = (convert_tensor(value, device=device, non_blocking=non_blocking) for value in batch)
return result
elif isinstance(batch, list):
result = [convert_tensor(value, device=device, non_blocking=non_blocking) for value in batch]
return result
else:
raise ValueError("Only dict, tuples and lists are valid for batch")
class TrainingMetric(Metric):
def __init__(self, metric: Metric):
self.source_metric = metric
self.reset()
super().__init__(lambda x: x[:-1])
def reset(self):
self.source_metric.reset()
def update(self, output):
if not isinstance(self.source_metric, MetricsLambda):
self.source_metric.update(output)
return
# If a source metric is made of several metrics, e.g. MetricsLambda
# metrics, we need to update each sub-metrics separately
for source in self.source_metric.args:
if isinstance(source, Metric):
source.update(output)
return
def compute(self):
return self.source_metric.compute()
@register_plugin
class BaseIgniteTrainer(TrainerABC):
def __init__(self,
model: nn.Module,
dataset_splits: DatasetSplits,
loss: nn.Module,
optimizer: optim.Optimizer,
metrics: Dict[str, Metric],
device: str = None,
num_epochs: int = 1,
seed: int = None,
cuda: bool = None,
loss_accumulation_steps: int = 4,
scheduler: Any = None,
regularizer: RegularizerABC = None,
gradient_clipping: float = 1.0,
output_transform=None,
tensorboard_logs: str = None):
self.model: nn.Module = model
self.forward_param_defaults = {}
model_spec = inspect.getfullargspec(model.forward)
self.forward_params: List[str] = model_spec.args[1:]
for fparam, pdefault in zip(reversed(model_spec.args[1:]), reversed(model_spec.defaults if model_spec.defaults else [])):
self.forward_param_defaults[fparam] = pdefault
self.dataset_splits: DatasetSplits = dataset_splits
self.loss: nn.Module = loss
self.optimizer: optim.Optimizer = optimizer
self.metrics: Dict[str, Metric] = metrics
self.metrics: List[Metric] = [metric for _, metric in self.metrics.items()]
self.device: str = device
self.num_epochs: int = num_epochs
self.scheduler: Any = scheduler
self.seed: int = seed
self.cuda: bool = cuda
if self.cuda is None: # If cuda not specified, just check if the cuda is available and use accordingly
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.loss_accumulation_steps: int = loss_accumulation_steps
self.regularizer: RegularizerABC = regularizer
self.gradient_clipping: float = gradient_clipping
self.output_transform = output_transform
self.tensorboard_logs: str = tensorboard_logs
if self.tensorboard_logs and TENSORBOARD:
self.writer = SummaryWriter(log_dir=self.tensorboard_logs)
if not self.output_transform:
self.output_transform = lambda y_pred, y_target, loss: (y_pred, y_target, loss)
self.eval_output_transform = lambda y, y_pred: (y, y_pred)
self.trainer, self.training_metrics = self.create_supervised_trainer()
self.evaluator = self.create_supervised_evaluator()
loss_metrics = [m for m in self.metrics if isinstance(m, Loss)]
if self.scheduler:
if not loss_metrics:
raise ValueError('A loss metric must be configured')
elif len(loss_metrics) > 1:
logging.warning('multiple loss metrics detected, using %s for LR scheduling', loss_metrics[0])
self.loss_metric = loss_metrics[0]
self.metrics_history = {
"training": defaultdict(list),
"validation": defaultdict(list),
"test": defaultdict(list)}
self.setup(self.training_metrics)
def setup(self, training_metrics: Dict):
def metric_name(n) -> str:
if n.endswith('Accuracy'):
n = 'acc'
else:
n = n[:-6] if n.endswith('Metric') else n
return n
def print_metrics(metrics) -> str:
rv = ''
metric_keys = sorted(k for k in metrics)
for k in metric_keys:
if k == 'Accuracy':
rv += f'{metric_name(k)}: {metrics[k]:.3} | '
else:
rv += f'{metric_name(k)}: {metrics[k]} | '
return rv
def store_metrics(metrics: Dict, mode: str):
metric_keys = sorted(k for k in metrics)
for k in metric_keys:
self.metrics_history[mode][metric_name(k)].append(metrics[k])
if self.seed:
set_seed_everywhere(self.seed, self.cuda)
pbar = ProgressBar(persist=True)
names = []
for k, v in training_metrics.items():
name = f'r{k}'
names.append(name)
RunningAverage(v).attach(self.trainer, name)
RunningAverage(None, output_transform=lambda x: x[-1]).attach(self.trainer, 'rloss')
names.append('rloss')
pbar.attach(self.trainer, names)
ProgressBar(persist=True).attach(engine=self.evaluator, metric_names=names)
# A few events handler. To add / modify the events handler, you need to extend the __init__ method of RunnerABC
# Ignite provides the necessary abstractions and a furnished repository of useful tools
@self.trainer.on(Events.EPOCH_COMPLETED)
def log_training_validation_results(trainer):
self.evaluator.run(self.dataset_splits.train_data_loader())
metrics = self.evaluator.state.metrics
store_metrics(metrics=metrics, mode="training")
logger.info(f"Training Results - Epoch: {trainer.state.epoch} {print_metrics(metrics)}")
self.evaluator.run(self.dataset_splits.val_data_loader())
metrics = self.evaluator.state.metrics
store_metrics(metrics=metrics, mode="validation")
logger.info(f"Validation Results - Epoch: {trainer.state.epoch} {print_metrics(metrics)}")
metrics = self.trainer.state.metrics
if self.scheduler:
self.scheduler.step(metrics["rloss"])
# self.scheduler.step(metrics[self.loss_metric.__class__.__name__])
@self.trainer.on(Events.COMPLETED)
def log_test_results(trainer):
if self.dataset_splits.test_set:
self.evaluator.run(self.dataset_splits.test_data_loader())
metrics = self.evaluator.state.metrics
store_metrics(metrics=metrics, mode="test")
logger.info(f"Test Results - Epoch: {trainer.state.epoch} {print_metrics(metrics)}")
def _forward(self, batch):
model_inputs = {}
for p in self.forward_params:
val = batch.get(p)
if val is None:
if p in self.forward_param_defaults:
val = self.forward_param_defaults[p]
else:
raise ValueError(f'missing model parameter "{p}"')
model_inputs[p] = val
return self.model(**model_inputs)
@abstractmethod
def update_engine(self, engine, batch):
raise NotImplementedError
@abstractmethod
def infer_engine(self, engine, batch):
raise NotImplementedError
def create_supervised_trainer(self):
if self.device:
self.model.to(self.device)
engine = Engine(self.update_engine)
metrics = {}
for i, metric in enumerate(self.metrics):
if not isinstance(metric, Loss):
n = metric.__class__.__name__
tm = TrainingMetric(metric)
metrics[n] = tm
tm.attach(engine, n)
return engine, metrics
def create_supervised_evaluator(self):
if self.device:
self.model.to(self.device)
engine = Engine(self.infer_engine)
for i, metric in enumerate(self.metrics):
metric.attach(engine, f'{str(metric.__class__.__name__)}')
return engine
def train(self):
raise NotImplementedError
@register_plugin
class SingleTaskTrainer(BaseIgniteTrainer):
def __init__(self,
model: nn.Module,
dataset_splits: DatasetSplits,
loss: nn.Module,
optimizer: optim.Optimizer,
metrics: Dict[str, Metric],
device: str = None,
num_epochs: int = 1,
seed: int = None,
cuda: bool = None,
loss_accumulation_steps: int = 4,
scheduler: Any = None,
regularizer: RegularizerABC = None,
gradient_clipping: float = 1.0,
output_transform=None,
tensorboard_logs: str = None,
optional_tensorboard_features: bool = False,
embeddings_name: str = None):
super().__init__(
model=model,
dataset_splits=dataset_splits,
loss=loss,
optimizer=optimizer,
metrics=metrics,
device=device,
num_epochs=num_epochs,
seed=seed,
cuda=cuda,
loss_accumulation_steps=loss_accumulation_steps,
scheduler=scheduler,
regularizer=regularizer,
gradient_clipping=gradient_clipping,
output_transform=output_transform,
tensorboard_logs=tensorboard_logs)
self.optional_tensorboard_features: bool = optional_tensorboard_features
self.embeddings_name: str = embeddings_name
self.custom_setup()
def custom_setup(self):
if self.tensorboard_logs:
tb_logger = TensorboardLogger(log_dir=self.tensorboard_logs)
tb_logger.attach(self.trainer,
log_handler=OutputHandler(tag="training", output_transform=lambda loss: {
'loss': loss}),
event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(self.evaluator,
log_handler=OutputHandler(tag="validation",
metric_names=["LossMetric"],
another_engine=self.trainer),
event_name=Events.EPOCH_COMPLETED)
if self.optional_tensorboard_features:
tb_logger.attach(self.trainer,
log_handler=OptimizerParamsHandler(self.optimizer),
event_name=Events.ITERATION_STARTED)
tb_logger.attach(self.trainer,
log_handler=WeightsScalarHandler(self.model),
event_name=Events.ITERATION_COMPLETED)
tb_logger.attach(self.trainer,
log_handler=WeightsHistHandler(self.model),
event_name=Events.EPOCH_COMPLETED)
tb_logger.attach(self.trainer,
log_handler=GradsScalarHandler(self.model),
event_name=Events.ITERATION_COMPLETED)
# This is important to close the tensorboard file logger
@self.trainer.on(Events.COMPLETED)
def end_tensorboard(trainer):
logger.info("Training completed")
tb_logger.close()
if self.embeddings_name:
@self.trainer.on(Events.COMPLETED)
def log_embeddings(trainer):
if hasattr(self.model, self.embeddings_name) and hasattr(self.dataset_splits, "vectorizer") and TENSORBOARD:
logger.info(f"Logging embeddings ({self.embeddings_name}) to Tensorboard!")
embeddings = getattr(self.model, self.embeddings_name).weight.data
metadata = [str(self.dataset_splits.vectorizer.data_vocab._id2token[token_index]).encode('utf-8') for token_index in
range(embeddings.shape[0])]
self.writer.add_embedding(mat=embeddings, metadata=metadata, global_step=self.trainer.state.epoch)
def update_engine(self, engine, batch):
# Gradient accumulation trick adapted from :
# https://medium.com/huggingface/training-larger-batches-practical-tips-on-1-gpu-multi-gpu-distributed-setups-ec88c3e51255
self.model.train()
batch = _prepare_batch(batch, device=self.device, non_blocking=False)
if isinstance(batch, dict):
y_pred = self._forward(batch)
loss = self.loss(input=y_pred, target=batch['y_target'])
elif isinstance(batch, tuple) or isinstance(batch, list):
y_pred = self.model.forward(*batch[:-1])
loss = self.loss(input=y_pred, target=batch[-1])
else:
raise ValueError("Only dict, tuples and lists are valid for batch")
# Add a regularisation term at train time only
if self.regularizer:
loss += self.regularizer.compute_penalty(model=self.model)
loss /= self.loss_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.gradient_clipping)
if engine.state.iteration % self.loss_accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
if isinstance(batch, dict):
return self.output_transform(y_pred, batch['y_target'], loss.item())
elif isinstance(batch, tuple) or isinstance(batch, list):
return self.output_transform(y_pred, batch[-1], loss.item())
else:
raise ValueError("Only dict, tuples and lists are valid for batch")
def infer_engine(self, engine, batch):
self.model.eval()
with torch.no_grad():
batch = _prepare_batch(batch, device=self.device, non_blocking=False)
if isinstance(batch, dict):
y_pred = self._forward(batch)
return self.eval_output_transform(y_pred, batch['y_target'])
elif isinstance(batch, tuple) or isinstance(batch, list):
y_pred = self.model.forward(*batch[:-1])
return self.eval_output_transform(y_pred, batch[-1])
else:
raise ValueError("Only dict, tuples and lists are valid for batch")
def train(self):
"""
Launch the ignite training pipeline
If fine-tuning mode is granted in the config file, freeze all layers, replace classification layer by a Linear layer
and reset the optimizer
:return:
"""
self.trainer.run(self.dataset_splits.train_data_loader(), max_epochs=self.num_epochs)
@register_plugin
class SingleTaskFineTuner(SingleTaskTrainer):
def __init__(self,
model: nn.Module,
dataset_splits: DatasetSplits,
loss: nn.Module,
optimizer: optim.Optimizer,
metrics: Dict[str, Metric],
device: str = None,
num_epochs: int = 1,
seed: int = None,
cuda: bool = None,
loss_accumulation_steps: int = 4,
scheduler: Any = None,
regularizer: RegularizerABC = None,
gradient_clipping: float = 1.0,
output_transform=None,
tensorboard_logs: str = None,
optional_tensorboard_features: bool = False,
embeddings_name: str = None,
adaptation: str = 'hard-freezing',
decreasing_factor: int = 2.6,
pretrained: bool = False):
super().__init__(
model=model,
dataset_splits=dataset_splits,
loss=loss,
optimizer=optimizer,
metrics=metrics,
device=device,
num_epochs=num_epochs,
seed=seed,
cuda=cuda,
loss_accumulation_steps=loss_accumulation_steps,
scheduler=scheduler,
regularizer=regularizer,
gradient_clipping=gradient_clipping,
output_transform=output_transform,
tensorboard_logs=tensorboard_logs,
optional_tensorboard_features=optional_tensorboard_features,
embeddings_name=embeddings_name
)
self.adaptation: str = adaptation
self.decreasing_factor: int = decreasing_factor
self.pretrained: bool = pretrained
def load_pretrained_model(self):
"""
This methid is not implemented so that pytorch_pretrained_bert is not a
required dependency. Use these lines to implement the method if using
pytorch_pretrained_bert
Returns:
"""
# from pytorch_pretrained_bert import cached_path
# logger.info("Loading pretrained model")
# state_dict = torch.load(cached_path("https://s3.amazonaws.com/models.huggingface.co/"
# "naacl-2019-tutorial/model_checkpoint.pth"), map_location=self.device)
# self.model.load_state_dict(state_dict, strict=False)
# logger.info("Pretrained model loaded!")
raise NotImplementedError
def freeze_params(self):
for name, param in self.model.named_parameters():
if 'embeddings' not in name and 'classification' not in name and 'adapters_1' not in name and 'adapters_2' not in name:
param.detach_()
param.requires_grad = False
else:
param.requires_grad = True
full_parameters = sum(p.numel() for p in self.model.parameters())
trained_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
logger.info(f"We will train {trained_parameters:3e} parameters out of {full_parameters:3e},"
f" i.e. {100 * trained_parameters / full_parameters:.2f}%")
def gradual_unfreezing(self):
for name, param in self.model.named_parameters():
if 'embeddings' not in name and 'classification' not in name:
param.detach_()
param.requires_grad = False
else:
param.requires_grad = True
full_parameters = sum(p.numel() for p in self.model.parameters())
trained_parameters = sum(p.numel() for p in self.model.parameters() if p.requires_grad)
logger.info(f"We will start by training {trained_parameters:3e} parameters out of {full_parameters:3e},"
f" i.e. {100 * trained_parameters / full_parameters:.2f}%")
# We will unfreeze blocks regularly along the training: one block every `unfreezing_interval` step
unfreezing_interval = int(len(self.dataset_splits.train_data_loader()) * self.num_epochs / (self.model.num_layers + 1))
@self.trainer.on(Events.ITERATION_COMPLETED)
def unfreeze_layer_if_needed(engine):
if engine.state.iteration % unfreezing_interval == 0:
# Which layer should we unfreeze now
unfreezing_index = self.model.num_layers - (engine.state.iteration // unfreezing_interval)
# Let's unfreeze it
unfreezed = []
for name, param in self.model.named_parameters():
if re.match(r"transformer\.[^\.]*\." + str(unfreezing_index) + r"\.", name):
unfreezed.append(name)
param.require_grad = True
logger.info(f"Unfreezing block {unfreezing_index} with {unfreezed}")
def discriminative_learning(self):
logger.info("Using discriminative learning as adaptation strategy")
# Build parameters groups by layer, numbered from the top ['1', '2', ..., '15']
parameter_groups = []
for i in range(self.model.num_layers):
name_pattern = r"transformer\.[^\.]*\." + str(i) + r"\."
group = {
'name': str(self.model.num_layers - i),
'params': [p for n, p in self.model.named_parameters() if re.match(name_pattern, n)]}
parameter_groups.append(group)
# Add the rest of the parameters (embeddings and classification layer) in a group labeled '0'
name_pattern = r"transformer\.[^\.]*\.\d*\."
group = {
'name': '0',
'params': [p for n, p in self.model.named_parameters() if not re.match(name_pattern, n)]}
parameter_groups.append(group)
# Sanity check that we still have the same number of parameters
assert sum(p.numel() for g in parameter_groups for p in g['params']) \
== sum(p.numel() for p in self.model.parameters())
@self.trainer.on(Events.ITERATION_STARTED)
def update_layer_learning_rates(engine):
for param_group in self.optimizer.param_groups:
layer_index = int(param_group["name"])
param_group["lr"] = param_group["lr"] / (self.decreasing_factor ** layer_index)
return parameter_groups
def train(self):
# if self.pretrained:
# self.load_pretrained_model()
#
# if self.adaptation == 'hard-freezing':
# self.freeze_params()
# elif self.adaptation == 'gradual-unfreezing':
# self.gradual_unfreezing()
# elif self.adaptation == 'discriminative-learning':
# parameter_groups = self.discriminative_learning()
# self.experiment_config.factories['optimizer'].kwargs['params'] = parameter_groups
# self.experiment_config.factories['optimizer'].param2config_key['params'] = parameter_groups
# else:
# raise ValueError("Transfer NLP supports only hard freezing, gradual unfreezing and discriminative learning")
#
# self.optimizer = self.experiment_config.factories['optimizer'].create()
# self.trainer.run(self.dataset_splits.train_data_loader(), max_epochs=self.num_epochs)
raise NotImplementedError
@register_plugin
class MultiTaskTrainer(BaseIgniteTrainer):
def __init__(self,
model: nn.Module,
dataset_splits: DatasetSplits,
loss: nn.Module,
optimizer: optim.Optimizer,
metrics: Dict[str, Metric],
device: str = None,
num_epochs: int = 1,
seed: int = None,
cuda: bool = None,
loss_accumulation_steps: int = 4,
scheduler: Any = None,
regularizer: RegularizerABC = None,
gradient_clipping: float = 1.0,
output_transform=None,
tensorboard_logs: str = None,
clf_loss_coef: float = 0.1,
lm_loss_coef: float = 0.9
):
super().__init__(
model=model,
dataset_splits=dataset_splits,
loss=loss,
optimizer=optimizer,
metrics=metrics,
device=device,
num_epochs=num_epochs,
seed=seed,
cuda=cuda,
loss_accumulation_steps=loss_accumulation_steps,
scheduler=scheduler,
regularizer=regularizer,
gradient_clipping=gradient_clipping,
output_transform=output_transform,
tensorboard_logs=tensorboard_logs)
self.clf_loss_coef = clf_loss_coef
self.lm_loss_coef = lm_loss_coef
RunningAverage(Accuracy(output_transform=lambda x: (x[0], x[1]))).attach(self.trainer, 'acc')
def update_engine(self, engine, batch):
self.model.train()
batch = _prepare_batch(batch, device=self.device, non_blocking=False)
lm_logits, clf_logits = self._forward(batch)
loss_lm, loss_clf = self.loss(lm_logits=lm_logits, clf_logits=clf_logits, lm_labels=batch['x'], clf_labels=batch['y_target'])
loss = (self.clf_loss_coef * loss_clf
+ self.lm_loss_coef * loss_lm) / self.loss_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.gradient_clipping)
if engine.state.iteration % self.loss_accumulation_steps == 0:
self.optimizer.step()
self.optimizer.zero_grad()
return clf_logits, batch['y_target'], loss.item()
def infer_engine(self, engine, batch):
self.model.eval()
with torch.no_grad():
batch = _prepare_batch(batch, device=self.device, non_blocking=False)
lm_logits, clf_logits = self._forward(batch)
return clf_logits, batch['y_target']
def create_supervised_evaluator(self):
if self.device:
self.model.to(self.device)
engine = Engine(self.infer_engine)
Accuracy().attach(engine, "accuracy")
return engine
def train(self):
self.trainer.run(self.dataset_splits.train_data_loader(), max_epochs=self.num_epochs)