forked from PSDat123/Knapsack-Artificial-Intelligent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBounded_branch.py
74 lines (64 loc) · 2.6 KB
/
Bounded_branch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class BranchAndBound:
def __init__(self, W: int, m: int, w: 'list[int]', v: 'list[int]', c: 'list[int]') -> None:
self.W = W
self.m = m
self.w = w
self.v = v
self.c = c
self.n = len(w)
self.best_value = 0
self.best_items = []
self.memo = {}
def bound(self, k: int, weight: int, value: int, taken: 'list[bool]') -> float:
if (k, weight) in self.memo:
return self.memo[(k, weight)]
if weight >= self.W:
return 0
remaining_classes = set(self.c[k:])
for i in range(k, self.n):
if self.c[i] in remaining_classes:
remaining_classes.remove(self.c[i])
weight += self.w[i]
value += self.v[i]
taken[i] = 1
for i in range(k, self.n):
if not taken[i] and self.c[i] not in remaining_classes:
frac = min(1, (self.W - weight) / self.w[i])
weight += frac * self.w[i]
value += frac * self.v[i]
self.memo[(k, weight)] = value
return value
def knapsack(self, k: int, weight: int, value: int, taken: 'list[bool]'):
if weight <= self.W and value > self.best_value:
self.best_value = value
self.best_items = taken[:]
if k == self.n:
return
sorted_items = sorted([(i, self.v[i]/self.w[i]) for i in range(k, self.n)], key=lambda x: -x[1])
for i, _ in sorted_items:
if weight + self.w[i] <= self.W:
taken[i] = 1
self.knapsack(i + 1, weight + self.w[i], value + self.v[i], taken)
taken[i] = 0
if self.bound(i + 1, weight, value, taken[:]) > self.best_value:
taken[i] = 0
self.knapsack(i + 1, weight, value, taken)
def solve(self) -> 'tuple[int, list[int]]':
taken = [0] * self.n
self.knapsack(0, 0, 0, taken)
return str(self.best_value), ', '.join([str(int(i)) for i in self.best_items])
test_seq = 3
def write_result(seq: int, value: str, state: str):
with open(f"./Output/OUTPUT_{seq}.txt", 'w') as f:
f.write(value + '\n' + state)
print("Write file successfully!")
with open(f"./Tests/INPUT_{test_seq}.txt") as f:
lines = f.readlines()
W = int(lines[0])
m = int(lines[1])
w = [int(l) for l in lines[2].strip().split(', ')]
v = [int(l) for l in lines[3].strip().split(', ')]
c = [int(l) for l in lines[4].strip().split(', ')]
bb = BranchAndBound(W, m, w, v, c)
value, state = bb.solve()
write_result(test_seq, value, state)