Skip to content

Commit 7eb42f3

Browse files
Xiao Fufacebook-github-bot
Xiao Fu
authored andcommitted
Add FastScan refinement tutorial for python
Differential Revision: D57650807
1 parent f38e52c commit 7eb42f3

File tree

1 file changed

+38
-0
lines changed

1 file changed

+38
-0
lines changed

tutorial/python/8-PQFastScanRefine.py

+38
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,38 @@
1+
# Copyright (c) Facebook, Inc. and its affiliates.
2+
#
3+
# This source code is licensed under the MIT license found in the
4+
# LICENSE file in the root directory of this source tree.
5+
6+
import faiss
7+
import numpy as np
8+
9+
d = 64 # dimension
10+
nb = 100000 # database size
11+
nq = 10000 # nb of queries
12+
np.random.seed(1234) # make reproducible
13+
xb = np.random.random((nb, d)).astype('float32') # 64-dim *nb queries
14+
xb[:, 0] += np.arange(nb) / 1000.
15+
xq = np.random.random((nq, d)).astype('float32')
16+
xq[:, 0] += np.arange(nq) / 1000.
17+
18+
m = 8 # 8 specifies that the number of sub-vector is 8
19+
k = 4 # number of dimension in etracted vector
20+
n_bit = 4 # 4 specifies that each sub-vector is encoded as 4 bits
21+
bbs = 32 # build block size ( bbs % 32 == 0 ) for PQ
22+
23+
index = faiss.IndexPQFastScan(d, m, n_bit, faiss.METRIC_L2)
24+
index_refine = faiss.IndexRefineFlat(index)
25+
# construct FastScan and run index refinement
26+
27+
assert not index_refine.is_trained
28+
index_refine.train(xb) # Train vectors data index within mockup database
29+
assert index_refine.is_trained
30+
31+
index_refine.add(xb)
32+
params = faiss.IndexRefineSearchParameters(k_factor=3)
33+
D, I = index_refine.search(xq[:5], 10, params=params)
34+
print(I)
35+
print(D)
36+
index.nprobe = 10 # make comparable with experiment above
37+
D, I = index.search(xq[:5], k) # search
38+
print(I[-5:])

0 commit comments

Comments
 (0)