
Store code outputs and insert into content

Contents
Gluing variables in your notebook

Pasting glued variables into your page

Controlling the pasted outputs

Advanced
glue
use-cases

You often wish to run analyses in one notebook and insert them in your
documents elsewhere. For example, if you’d like to

include a figure,
or if you want to cite an analysis that you have run.

The glue tool from MyST-NB
allows you to add a key to variables in a notebook,
then display those variables in your book by

referencing the key. It
follows a two-step process:

Glue a variable to a name. Do this by using
the myst_nb.glue function on a variable
that you’d like to re-use elsewhere in

the book. You’ll give the variable
a name that can be referenced later.

Reference that variable from your page’s content. Then, when you are
writing your content, insert the variable into your

text by using a
{glue:} role.

We’ll cover each step in more detail below.

Gluing variables in your notebook
You can use myst_nb.glue() to assign the value of a variable to
a key of your choice. glue will store all of the information that is

normally used to display
that variable (i.e., whatever happens when you display the variable by putting it at the end of a
code

cell). Choose a key that you will remember, as you will use it later.

The following code glues a variable inside the notebook to the key "cool_text":

You can then insert it into your text. Adding
{glue:}`cool_text` to your content results in the
following: 'here is some

text!'.

Gluing numbers, plots, and tables

Currently, glue only works with
Python.

For more information about roles, see
MyST Markdown overview.

from myst_nb import glue

my_variable = "here is some text!"

glue("cool_text", my_variable)

'here is some text!'

https://myst-nb.readthedocs.io/
file:///Users/u6533564/Documents/Office/ExecutableBookProject/forks/jupyter-book/docs/_build/html/content/myst.html

You can glue anything in your notebook and display it later with {glue:}. Here
we’ll show how to glue and paste numbers and

images. We’ll simulate some
data and run a simple bootstrap on it. We’ll hide most of this process below,
to focus on the

glueing part.

In the cell below, data contains our data, and bootstrap_indices is a collection of sample indices in each bootstrap. Below we’ll

calculate a few statistics of interest, and
glue() them into the notebook.

By default, glue will display the value of the variable you are gluing. This
is useful for sanity-checking its value at glue-time. If

you’d like to prevent display,
use the display=False option. Note that below, we also overwrite the value of
boot_chi (but

using the same value):

You can also glue visualizations, such as Matplotlib figures (here we use display=False to ensure that the figure isn’t plotted

twice):

The same can be done for DataFrames (or other table-like objects) as well.

Calculate the mean of a bunch of random samples

means = data[bootstrap_indices].mean(0)

Calculate the 95% confidence interval for the mean

clo, chi = np.percentile(means, [2.5, 97.5])

Store the values in our notebook

glue("boot_mean", means.mean())

glue("boot_clo", clo)

glue("boot_chi", chi)

2.9988253752142104

2.98660033678336

3.011217074531912

glue("boot_chi_notdisplayed", chi, display=False)

Visualize the historgram with the intervals

fig, ax = plt.subplots()

ax.hist(means)

for ln in [clo, chi]:

 ax.axvline(ln, ls='--', c='r')

ax.set_title("Bootstrap distribution and 95% CI")

And a wider figure to show a timeseries

fig2, ax = plt.subplots(figsize=(6, 2))

ax.plot(np.sort(means), lw=3, c='r')

ax.set_axis_off()

glue("boot_fig", fig, display=False)

glue("sorted_means_fig", fig2, display=False)

first second third

0 2.927667 3.005962 3.170688

1 3.206501 3.116371 3.242164

2 2.891873 2.769775 3.177249

3 3.139339 2.668097 2.772584

4 2.914112 2.982948 3.112346

Since we are going to paste this figure into our document at a later point,
you may wish to remove the output here,

using the remove-output tag
(see Removing code cell content).

Pasting glued variables into your page
Once you have glued variables to their names, you can then paste
those variables into your text in your book anywhere you like

(even on other pages).
These variables can be pasted using one of the roles or directives in the glue family.

The glue role/directive

The simplest role and directive is glue:any,
which pastes the glued output in-line or as a block respectively,
with no additional

formatting.
Simply add this:

For example, we’ll paste the plot we generated above with the following text:

Here’s how it looks:

Or we can paste in-line objects like so:

In-line text; 2.9988253752142104, and a figure: .

bootstrap_subsets = data[bootstrap_indices][:3, :5].T

df = pd.DataFrame(bootstrap_subsets, columns=["first", "second", "third"])

glue("df_tbl", df)

Tip

```{glue:} your-key

```


```{glue:} boot_fig

```


In-line text; {glue:}`boot_mean`, and a figure: {glue:}`boot_fig`.

file:///Users/u6533564/Documents/Office/ExecutableBookProject/forks/jupyter-book/docs/_build/html/interactive/hiding.html#hiding-remove-content

We recommend using wider, shorter figures when plotting in-line, with a ratio
around 6x2. For example, here’s an in-

line figure of sorted means
from our bootstrap: .
It can be used to make a visual point that isn’t too

complex! For more
ideas, check out how sparklines are used.

Next we’ll cover some more specific pasting functionality, which gives you more
control over how the pasted outputs look in

your pages.

Controlling the pasted outputs
You can control the pasted outputs by using a sub-command of {glue:}. These are used like so:
{glue:subcommand}`key`.

These subcommands allow you to control more of the look, feel, and
content of the pasted output.

When you use {glue:} you are actually using shorthand for {glue:any}. This is a
generic command that doesn’t make

many assumptions about what you are gluing.

The glue:text role

The glue:text role is specific to text outputs.
For example, the following text:

Is rendered as:
The mean of the bootstrapped distribution was 2.9988253752142104 (95% confidence interval

2.98660033678336/3.011217074531912)

glue:text only works with glued variables that contain a text/plain output.

With glue:text we can add formatting to the output.
This is particularly useful if you are displaying numbers and
want to

round the results. To add formatting, use this syntax:

{glue:text}`mykey:formatstring`

For example, My rounded mean: {glue:text}`boot_mean:.2f` will be rendered like this: My rounded mean: 3.00 (95% CI:

2.99/3.01).

The glue:figure directive

With glue:figure you can apply more formatting to figure-like objects,
such as giving them a caption and referenceable label.

For example,

produces the following figure:

Tip

Tip

The mean of the bootstrapped distribution was {glue:text}`boot_mean` (95% confidence interval
{glue:text}`boot_clo`/{glue:text}`boot_chi`).

Note

```{glue:figure} boot_fig

:figwidth: 300px

:name: "fig-boot"


This is a **caption**, with an embedded `{glue:text}` element: {glue:text}`boot_mean:.2f`!

```


https://en.wikipedia.org/wiki/Sparkline

Fig. 10 This is a caption, with an

embedded {glue:text}

element: 3.00!

Later, the code

can be used to reference the figure.

Here is a reference to the figure

Here’s a table:

which gets rendered as

Fig. 11 A caption for a pandas

table.

The glue:math directive

The glue:math directive is specific to LaTeX math outputs
(glued variables that contain a text/latex MIME type),
and works

similarly to the Sphinx math directive.
For example, with this code we glue an equation:

and now we can use the following code:

first second third

0 2.927667 3.005962 3.170688

1 3.206501 3.116371 3.242164

2 2.891873 2.769775 3.177249

3 3.139339 2.668097 2.772584

4 2.914112 2.982948 3.112346

Here is a {ref}`reference to the figure <fig-boot>`


```{glue:figure} df_tbl

:figwidth: 300px

:name: "tbl:df"


A caption for a pandas table.

```


import sympy as sym

f = sym.Function('f')

y = sym.Function('y')

n = sym.symbols(r'\alpha')

f = y(n)-2*y(n-1/sym.pi)-5*y(n-2)

glue("sym_eq", sym.rsolve(f,y(n),[1,4]))

(−) + (+)(𝑖)5
‾√

𝛼 1

2

2 𝑖5‾√

5
(− 𝑖)5

‾√
𝛼 1

2

2 𝑖5‾√

5

https://www.sphinx-doc.org/en/1.8/usage/restructuredtext/directives.html#math

By The Jupyter Book Community

© Copyright 2021.

to insert the equation here:

glue:math only works with glued variables that contain a text/latex output.

Advanced glue use-cases
Here are a few more specific and advanced uses of the glue submodule.

Pasting into tables

In addition to pasting blocks of outputs, or in-line with text, you can also paste directly
into tables. This allows you to compose

complex collections of structured data using outputs
that were generated in other cells or other notebooks. For example, the

following Markdown table:

Results in:

name plot mean ci

histogram and raw

text

2.9988253752142104 2.98660033678336-3.011217074531912

sorted means and

formatted text

2.999 2.987-3.011

```{glue:math} sym_eq

:label: eq-sym

```


()(−) + (+)(𝑖)5
‾√

𝛼 1

2

2 𝑖5‾√

5
(− 𝑖)5

‾√
𝛼 1

2

2 𝑖5‾√

5

Note

| name | plot | mean | ci
|

|:-------------------------------:|:-----------------------------:|---------------------------|---------------------
------------------------------|

| histogram and raw text | {glue:}`boot_fig` | {glue:}`boot_mean` | {glue:}`boot_clo`-
{glue:}`boot_chi` |

| sorted means and formatted text | {glue:}`sorted_means_fig` | {glue:text}`boot_mean:.3f` |
{glue:text}`boot_clo:.3f`-{glue:text}`boot_chi:.3f` |

