-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
240 lines (193 loc) · 6.73 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import glob
import json
import logging
import random
import subprocess
import time
from pathlib import Path
import h5py
import numpy as np
import pandas as pd
import torch
import yaml
from tensorboardX import SummaryWriter
from torch.utils.data.sampler import Sampler
from torch.utils.data.dataloader import default_collate
PATH_VARS = {'h5_path_nis', 'test_list', 'val_list', 'train_list'}
def load_args_from_snapshot(args, path_vars=PATH_VARS):
"Update arguments with those from snapshot JSON"
if not args.snapshot.exists():
return False
elif len(args.snapshot.name) == 0:
return True
# Protect the lede
snapshot, logfile = args.snapshot, args.logfile
with open(args.snapshot, 'r') as fid:
hyper_prm = json.load(fid)
for key, value in hyper_prm.items():
# PR welcome if you know a more elegant way to do this
if value and key in path_vars:
value = Path(value)
setattr(args, key, value)
args.snapshot, args.logfile = snapshot, logfile
return True
def setup_hyperparameters(args):
"Update Namescope with random hyper-parameters according to a YAML-file"
if not args.hps:
return
filename = args.logfile.parent / 'hps.yml'
if not filename.exists():
logging.error(f'Ignoring HPS. Not found {filename}')
return
with open(filename, 'r') as fid:
config = yaml.load(fid)
logging.info('Proceeding to perform random HPS')
args_dview = vars(args)
# Random search over single parameter of tied variables
slack_tied = {'w_intra': 'w_inter',
'c_intra': 'c_inter'}
for slack, tied in slack_tied.items():
if tied in config:
if isinstance(config.get(slack), list):
logging.warning(f'Ignoring {tied}')
del config[tied]
for k, v in config.items():
if not isinstance(v, list):
args_dview[k] = v
continue
random.shuffle(v)
args_dview[k] = v[0]
if k == slack_tied:
args_dview[slack_tied[k]] = 1 - v[0]
# Note: only available in YAML
if args.clip_loss and args.only_clip_loss:
args_dview['w_intra'] = 0.0
args_dview['w_inter'] = 0.0
def setup_logging(args):
"Setup logging to dump progress into file or print it"
log_prm = dict(format='%(asctime)s:%(levelname)s:%(message)s',
level=logging.DEBUG)
if len(args.logfile.name) >= 1:
log_prm['filename'] = args.logfile.with_suffix('.log')
log_prm['filemode'] = 'x'
logging.basicConfig(**log_prm)
args.writer = None
if args.enable_tb:
# This should be a module variable in case we don't want tensorboard
args.writer = SummaryWriter(args.logfile.with_suffix(''))
def setup_metrics(args, topks, iou_thresholds, topks_didemo):
"Update args with metrics"
args.topk = torch.tensor(topks)
args.iou_thresholds = iou_thresholds
args.topk_ = topks_didemo
def setup_rng(args):
"Init random number generators from seed in Namespace"
if args.seed < 1:
args.seed = random.randint(0, 2**16)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
def save_checkpoint(args, state, record=False):
"Serialize model into pth"
if len(args.logfile.name) == 0 or not args.serialize:
return
filename = args.logfile.with_suffix('.pth.tar')
if record:
epoch = args.epochs
name = args.logfile.stem
filename = args.logfile.with_name(f'{name}-{epoch}.pth.tar')
torch.save(state, filename)
def ship_to(x, device):
# TODO: clean like default_collate :S
y = []
for i in x:
if isinstance(i, dict):
y.append({k: v.to(device) for k, v in i.items()})
elif isinstance(i, torch.Tensor):
y.append(i.to(device))
else:
y.append(i)
return y
def unique2d_perserve_order(x):
"""Return unique along rows in x
Note: It assumes the same range of numbers for each row in x
"""
assert x.ndim == 2
y = []
for i in range(len(x)):
_, ind = np.unique(x[i, :], return_index=True)
y.append(x[i, np.sort(ind)])
return np.row_stack(y)
class AverageMeter(object):
"""Computes and stores the average and current value
Credits: pytorch-imagenet-example
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
class Tracker(object):
"Keep track of torch tensors or numpy scalar things"
def __init__(self, keys):
self.data = {i: [] for i in keys}
def append(self, *args):
"Add values to track"
for i, key in enumerate(self.data):
self.data[key].append(args[i])
def freeze(self, cpu=True):
"Make everything a tensor and move to cpu"
for key, value in self.data.items():
if not isinstance(value[0], torch.Tensor):
self.data[key] = torch.tensor(value)
continue
elif value[0].dim() > 1 or value[0].shape[0] > 1:
self.data[key] = torch.stack(value)
else:
self.data[key] = torch.cat(value)
if cpu:
self.data[key] = self.data[key].to('cpu')
del (value)
class Multimeter(object):
"Keep multiple AverageMeter"
def __init__(self, keys=None):
self.metrics = keys
self.meters = [AverageMeter() for i in keys]
def reset(self):
for i, _ in enumerate(self.metrics):
self.meters.reset()
def update(self, vals, n=1):
assert len(vals) == len(self.metrics)
for i, v in enumerate(self.meters):
v.update(vals[i], n)
def report(self):
msg = ''
for i, v in enumerate(self.metrics):
msg += f'{v}: {self.meters[i].avg:.4f}\t'
return msg[:-1]
def dump(self):
return {v: self.meters[i].avg for i, v in enumerate(self.metrics)}
def get_git_revision_hash():
"credits: https://stackoverflow.com/a/21901260"
return subprocess.check_output(['git', 'rev-parse', 'HEAD'],
universal_newlines=True).strip()
def jsons_to_dataframe(wilcard):
"Read multiple json files and stack them into a DataFrame"
data = []
for filename in glob.glob(wilcard):
with open(filename) as f:
data.append(json.load(f))
df = pd.DataFrame(data)
return df
if __name__ == '__main__':
aja = Multimeter(['hi', 'vi', 'tor'])
aja.update([1, 2, 3])
aja.update([3, 2, 1])
print(f'{aja.report()}')