-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmixins.py
72 lines (54 loc) · 2.76 KB
/
mixins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import dataclasses
from typing import List, Union, Optional, Tuple
__all__ = [
'HasSelfIndexingGroupMixin',
'HasTargetIndexingGroupMixin',
'TensorDataClassWithSingleDataTensorMixin',
'TensorDataClassWithSingleIndicesTensorMixin',
'TensorDataClassWithSingleSequenceFieldMixin',
'TensorDataClassWithSequencesMixin']
@dataclasses.dataclass
class HasSelfIndexingGroupMixin:
self_indexing_group: str = None
@classmethod
def get_management_fields(cls) -> Tuple[str, ...]:
supers = super(HasSelfIndexingGroupMixin, cls).get_management_fields() \
if hasattr(super(HasSelfIndexingGroupMixin, cls), 'get_management_fields') else ()
return supers + ('self_indexing_group',)
@dataclasses.dataclass
class HasTargetIndexingGroupMixin:
tgt_indexing_group: str = None
@classmethod
def get_management_fields(cls) -> Tuple[str, ...]:
supers = super(HasTargetIndexingGroupMixin, cls).get_management_fields() \
if hasattr(super(HasTargetIndexingGroupMixin, cls), 'get_management_fields') else ()
return supers + ('tgt_indexing_group',)
def find_addressed_batched_flattened_tensor(self, tensors_data_class_root: 'TensorsDataClass') \
-> Optional['HasSelfIndexingGroupMixin']:
# TODO: is it sufficient to check isinstance(HasSelfIndexingGroupMixin)?
# doesn't it have to be 'BatchFlattenedTensorsDataClass'?
return next((
tensor_data_class for tensor_data_class in tensors_data_class_root.traverse(fields_group='data')
if isinstance(tensor_data_class, HasSelfIndexingGroupMixin) and
tensor_data_class.self_indexing_group == self.tgt_indexing_group), None)
@dataclasses.dataclass
class TensorDataClassWithSingleDataTensorMixin:
tensor: torch.Tensor
@dataclasses.dataclass
class TensorDataClassWithSingleIndicesTensorMixin:
indices: torch.LongTensor
@dataclasses.dataclass
class TensorDataClassWithSingleSequenceFieldMixin:
sequences: Union[List[torch.Tensor], torch.Tensor, List[List[str]]]
@dataclasses.dataclass
class TensorDataClassWithSequencesMixin:
batch_first: bool = True
sequences_lengths: Optional[torch.LongTensor] = dataclasses.field(default=None, init=False)
sequences_mask: Optional[torch.BoolTensor] = dataclasses.field(default=None, init=False)
max_sequence_length: Optional[int] = dataclasses.field(default=None, init=False)
@classmethod
def get_management_fields(cls) -> Tuple[str, ...]:
supers = super(TensorDataClassWithSequencesMixin, cls).get_management_fields() \
if hasattr(super(TensorDataClassWithSequencesMixin, cls), 'get_management_fields') else ()
return supers + ('batch_first', 'sequences_lengths', 'sequences_mask', 'max_sequence_length')