-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSumGan.py
executable file
·719 lines (640 loc) · 33.8 KB
/
SumGan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
from __future__ import unicode_literals, print_function
from __future__ import absolute_import
from __future__ import division
import tensorflow as tf
from collections import namedtuple, deque
import numpy as np
import datetime
import utils
import time
import sys
# import data
from batcher import GenBatcher
from decode import Decoder
from pointer_generator import PointerGenerator
from rollout import Rollout
from os.path import join as join_path
from utils import ensure_exists
from gen_utils import calc_running_avg_loss
from gen_utils import get_best_loss_from_chpt
from gen_utils import save_ckpt as gen_save_ckpt
from gan_utils import save_ckpt as gan_save_ckpt
# from gan_utils import check_rouge
# from dis_utils import eval_dis
# from tensorflow.python import debug as tf_debug
from utils import sattolo_cycle
from utils import print_dashboard
# from dis_utils import dump_chpt
import math
from termcolor import colored
from data import POSITIVE_LABEL, NEGATIVE_LABEL
from data import outputsids2words, strip_pads
from gan_utils import show_sample_reward
from res_discriminator import Seq2ClassModel
from data import Vocab
DEBUG = False
STOP_DECODING = '[STOP]'
epsilon = sys.float_info.epsilon
# tf.logging.set_verbosity(tf.logging.ERROR)
tf.app.flags.DEFINE_string(
'mode', 'train',
'must be one of pretrain_gen/train_gan/decode')
# ------------------------------------- common
tf.app.flags.DEFINE_integer("batch_size", 14, "Batch size to use during training.")
tf.app.flags.DEFINE_integer('steps_per_checkpoint', 10000, 'Restore the best model in the eval/ dir and save it in the train/ dir, ready to be used for further training. Useful for early stopping, or if your training checkpoint has become corrupted with e.g. NaN values.')
tf.app.flags.DEFINE_float('learning_rate_decay_factor', 0.5, 'Learning rate decay by this rate')
tf.app.flags.DEFINE_float('sample_rate', 0.5, 'the sample rate, should be [0, 0.5]')
tf.app.flags.DEFINE_float('keep_prob', 0.5, 'the dropout prob')
# ------------------------------------- discriminator
# Model parameters
tf.app.flags.DEFINE_integer("layer_size", 300, "Size of each model layer.")
tf.app.flags.DEFINE_integer("conv_layers", 2, "Number of convolution layers in the model.")
tf.app.flags.DEFINE_integer("pool_layers", 2, "Number of pooling layers in the model.")
tf.app.flags.DEFINE_integer("kernel_size", 3, "the kernel size of the conv")
tf.app.flags.DEFINE_integer("pool_size", 2, "Number of layers in the model.")
tf.app.flags.DEFINE_string("cell_type", "GRU", "Cell type")
tf.app.flags.DEFINE_string("vocab_type", "char", "the path of the discriminator vocabulary.")
tf.app.flags.DEFINE_integer("num_class", 2, "num of output classes.")
tf.app.flags.DEFINE_integer("num_models", 3, "Size of each model layer. The actural size is doubled.")
# Training parameters
tf.app.flags.DEFINE_float("dis_lr", 0.0005, "Learning rate.")
tf.app.flags.DEFINE_float("lr_decay_factor", 0.5, "Learning rate decays by this much.")
tf.app.flags.DEFINE_float("dis_max_gradient", 2.0, "Clip gradients to this norm.")
# TODO: how much thould this be?
tf.app.flags.DEFINE_boolean("early_stop", False, "Set to True to turn on early stop.")
tf.app.flags.DEFINE_integer("max_steps", -1, "max number of steps to train")
# Misc
tf.app.flags.DEFINE_string("model_dir", "./model", "Training directory.")
tf.app.flags.DEFINE_string("val_dir", "val", "Training directory.")
# ------------------------------------- generator
# Where to find data
tf.app.flags.DEFINE_string(
'data_path', './data/', 'Path expression to tf.Example datafiles and vocabulary \
Can include wildcards to access multiple datafiles.')
tf.app.flags.DEFINE_string("enc_vocab_file", "enc_vocab", "the path of the generator vocabulary.")
tf.app.flags.DEFINE_string("dec_vocab_file", "dec_vocab", "the path of the generator vocabulary.")
# data_path/gen_vocab: vocabulary for the generator
# data_path/[decode/eval]_[positive/negative/source]: the data for the discriminator
# data_path/[train/val/test]_\d+.bin: the data for the generator
# Important settings
tf.app.flags.DEFINE_boolean('single_pass', False, 'For decode mode only. If True, run eval on the full dataset using a'
'fixed checkpoint, i.e. take the current checkpoint, and use it to'
'produce one summary for each example in the dataset, writethesummaries'
'to file and then get ROUGE scores for the whole dataset. If False'
'(default), run concurrent decoding, i.e. repeatedly load latest'
'checkpoint, use it to produce summaries forrandomly-chosenexamples and'
'log the results to screen, indefinitely.')
# Where to save output
tf.app.flags.DEFINE_string('log_root', './log/', 'Root directory for all logging.')
tf.app.flags.DEFINE_string('dec_dir', '', 'Where to generate the decode results. If false the time stamp is toke.')
tf.app.flags.DEFINE_string('exp_name', '', 'Name for experiment. Logs will be saved in adirectory with this name, under log_root.')
# Hyperparameters
tf.app.flags.DEFINE_integer('hidden_dim', 500, 'Dimension of RNN hidden states')
tf.app.flags.DEFINE_integer('word_emb_dim', 300, 'Dimension of word embeddings.')
tf.app.flags.DEFINE_integer('char_emb_dim', 300, 'Dimension of character embeddings.')
# if batch_size is one and beam size is not one in the decode mode then the beam
# search is the same as the original beam search
tf.app.flags.DEFINE_integer('max_enc_steps', 73, 'max timesteps of encoder (max source text tokens)') # 120
tf.app.flags.DEFINE_integer('max_dec_steps', 23, 'max timesteps of decoder (max summary tokens)') # 25
tf.app.flags.DEFINE_integer('beam_size', 2, 'beam size for beam search decoding.')
tf.app.flags.DEFINE_integer('min_dec_steps', 5, 'Minimum sequence length of generated summary. Applies only for beam search decoding mode')
tf.app.flags.DEFINE_integer('dec_vocab_size', 7500, 'Size of vocabulary of the decoder in the generator.')
tf.app.flags.DEFINE_integer('enc_vocab_size', 500000, 'Size of vocabulary of the encoder in the generator.')
tf.app.flags.DEFINE_float('gen_lr', 0.001, 'learning rate')
tf.app.flags.DEFINE_float('rand_unif_init_mag', 0.02, 'magnitude for lstm cells random uniform inititalization')
tf.app.flags.DEFINE_float('trunc_norm_init_std', 1e-4, 'std of trunc norm init, used for initializing everything else')
tf.app.flags.DEFINE_float('gen_max_gradient', 2.0, 'for gradient clipping')
tf.app.flags.DEFINE_string('encoder', 'lstm_encoder', 'Name for the encoder type. Support lstm_encoder and conv_encoder so far.')
tf.app.flags.DEFINE_string('decoder', 'lstm_decoder', 'Name for the decoder type. Support lstm_decoder and conv_decoder so far.')
# Pointer-generator or baseline model
# tf.app.flags.DEFINE_boolean('pointer_gen', True, 'If True, use pointer-generator model. If False, use baseline model.')
# Coverage hyperparameters
tf.app.flags.DEFINE_boolean('coverage', False, 'Use coverage mechanism. Note, the experiments reported in the ACL '
'paper train WITHOUT coverage until converged, and then train for a short phase WITH coverage afterwards.'
'i.e. to reproduce the results in the ACL paper, turn this off for most of training then turn on for a short phase at the end.')
# coverage can be only used while decoding either in the gan or in the pretraining
tf.app.flags.DEFINE_float('cov_loss_wt', 1.0, 'Weight of coverage loss (lambda in the paper). If zero, then no incentive to minimize coverage loss.')
tf.app.flags.DEFINE_boolean('convert_to_coverage_model', True, 'Convert a non-coverage model to a coverage model. '
'Turn this on and run in train mode. \ Your current model will be copied to a new version '
'(same name with _cov_init appended)\ that will be ready to run with coverage flag turned on,\ for the coverage training stage.')
# ------------------------------------- gan
tf.app.flags.DEFINE_integer('rollout_start', 1, 'how many times to run the gan')
tf.app.flags.DEFINE_integer('gan_iter', 200000, 'how many times to run the gan')
tf.app.flags.DEFINE_integer('gan_dis_iter', 10**8, 'in each gan step run how many times the generator')
tf.app.flags.DEFINE_integer('rollout_num', 12, 'how many times to repeat the rollout process.')
tf.app.flags.DEFINE_string("gan_dir", "gan", "Training directory.")
tf.app.flags.DEFINE_integer('sample_num', 20, 'beam size for beam search decoding.')
tf.app.flags.DEFINE_float('gan_lr', 0.0005, 'learning rate for the gen in GAN training')
tf.app.flags.DEFINE_float('rouge_reward_ratio', 0, 'The importance of rollout in calculating the reward.')
tf.app.flags.DEFINE_float('dis_reward_ratio', 0, 'The importance of rollout in calculating the reward.')
tf.app.flags.DEFINE_boolean('subtract', False, "if the reward of the current word should be subtracted by the reward of the previous word")
# if not subtract the later the better and then it will generate shorter and
# shorter
FLAGS = tf.app.flags.FLAGS
assert FLAGS.mode in ["pretrain_gen", "train_gan", "decode"]
assert FLAGS.sample_rate >= 0 and FLAGS.sample_rate <= 0.5, "sample rate should be [0, 0.5]"
if FLAGS.mode == "train_gan":
FLAGS.single_pass = False
FLAGS.beam_size = int(FLAGS.beam_size / 2) if FLAGS.beam_size > 3 else 2
if FLAGS.min_dec_steps > FLAGS.max_dec_steps / 2:
FLAGS.min_dec_steps = int(FLAGS.max_dec_steps / 2)
ensure_exists(FLAGS.model_dir)
def pretrain_generator(model, batcher, sess, batcher_val, model_saver, val_saver):
"""Repeatedly runs training iterations, logging loss to screen and writing
summaries"""
print("starting pre_training")
best_loss = None # will hold the best loss achieved so far
val_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator', FLAGS.val_dir))
model_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator'))
best_loss = get_best_loss_from_chpt(val_dir)
# get the val loss score
coverage_loss = None
hps = model.hps
# this is where checkpoints of best models are saved
running_avg_loss = 0
# the eval job keeps a smoother, running average loss to tell it when to
# implement early stopping
start_time = time.time()
eval_save_steps = FLAGS.steps_per_checkpoint
last_ten_eval_loss = deque(maxlen=10)
counter = 0
while True: # repeats until interrupted
batch = batcher.next_batch()
if batch is None:
return None
results = model.run_one_batch(sess, batch)
counter += 1
global_step = results['global_step']
# print('seconds for training step: %.3f', t1-t0)
loss = results['loss']
if global_step == 1:
print("The training starts with loss %s." % loss)
print("\n\nThe parameters: \n")
print(
'mode: %s\n'
'model_dir: %s\n'
'decoder: %s\n'
'steps_per_checkpoint: %s\n'
'batch_size: %s\n'
'beam_size: %s\n'
'coverage: %s\n'
'word_emb_dim: %s\n'
'char_emb_dim: %s\n'
'rand_unif_init_mag: %s\n'
'enc_vocab_file: %s\n'
'dec_vocab_file: %s\n'
'vocab_type: %s\n'
'enc_vocab_size: %s\n'
'dec_vocab_size: %s\n'
'hidden_dim: %s\n'
'gen_lr: %s\n'
'gen_max_gradient: %s\n'
'max_dec_steps: %s\n'
'max_enc_steps: %s\n'
'min_dec_steps: %s\n'
'trunc_norm_init_std: %s\n'
'single_pass: %s\n'
'log_root: %s\n'
'data_path: %s\n' % (
hps.mode,
hps.model_dir,
hps.decoder,
hps.steps_per_checkpoint,
hps.batch_size,
hps.beam_size,
hps.coverage,
hps.word_emb_dim,
hps.char_emb_dim,
hps.rand_unif_init_mag,
hps.enc_vocab_file,
hps.dec_vocab_file,
hps.vocab_type,
hps.enc_vocab_size,
hps.dec_vocab_size,
hps.hidden_dim,
hps.gen_lr,
hps.gen_max_gradient,
hps.max_dec_steps,
hps.max_enc_steps,
hps.min_dec_steps,
hps.trunc_norm_init_std,
hps.single_pass,
hps.log_root,
hps.data_path)
)
if hps.coverage:
coverage_loss = results['coverage_loss']
running_avg_loss = calc_running_avg_loss(
np.asscalar(loss), running_avg_loss, global_step)
if global_step % eval_save_steps == 0:
# check if it is the best checkpoint so far
eval_loss, best_loss = gen_save_ckpt(
sess, model, best_loss, model_dir, model_saver,
batcher_val, val_dir, val_saver, global_step, gan_eval=False)
last_ten_eval_loss.append(eval_loss)
if len(last_ten_eval_loss) == 15 and min(last_ten_eval_loss) == last_ten_eval_loss[0] and eval_save_steps > 5000:
last_ten_eval_loss = deque(maxlen=10)
eval_save_steps -= 1000
current_learing_rate = model.get_cur_lr(sess)
# print the print the dashboard
current_speed = (time.time() - start_time + epsilon) / ((counter * hps.batch_size) + epsilon)
total_training_time = (time.time() - start_time) * global_step / (counter * 3600)
print_dashboard("Generator", global_step, hps.batch_size, hps.enc_vocab_size, hps.dec_vocab_size,
running_avg_loss, eval_loss,
total_training_time, current_speed, current_learing_rate,
coverage_loss if coverage_loss else "not set")
def main(argv):
tf.set_random_seed(111) # a seed value for randomness
# Create a batcher object that will create minibatches of data
# TODO change to pass number
# --------------- building graph ---------------
hparam_gen = [
'mode',
'model_dir',
'encoder',
'decoder',
'adagrad_init_acc',
'steps_per_checkpoint',
'batch_size',
'beam_size',
'cov_loss_wt',
'coverage',
'word_emb_dim',
'char_emb_dim',
'rand_unif_init_mag',
'enc_vocab_file',
'dec_vocab_file',
'vocab_type',
'dec_vocab_size',
'enc_vocab_size',
'keep_prob',
'hidden_dim',
'gen_lr',
'gen_max_gradient',
'max_dec_steps',
'max_enc_steps',
'min_dec_steps',
'trunc_norm_init_std',
'single_pass',
'log_root',
'data_path',
]
hps_dict = {}
for key, val in FLAGS.__flags.iteritems(): # for each flag
if key in hparam_gen: # if it's in the list
hps_dict[key] = val # add it to the dict
hps_gen = namedtuple("HParams4Gen", hps_dict.keys())(**hps_dict)
print("Building vocabulary for generator ...")
enc_vocab = Vocab(join_path(hps_gen.data_path, hps_gen.enc_vocab_file), hps_gen.enc_vocab_size)
dec_vocab = Vocab(join_path(hps_gen.data_path, hps_gen.dec_vocab_file), hps_gen.dec_vocab_size)
hparam_dis = [
'mode',
'vocab_type',
'model_dir',
'steps_per_checkpoint',
'learning_rate_decay_factor',
'num_class',
'layer_size',
'conv_layers',
'max_steps',
'kernel_size',
'early_stop',
'pool_size',
'hidden_dim',
'pool_layers',
'dis_max_gradient',
'batch_size',
'dis_lr',
'keep_prob',
'lr_decay_factor',
'rand_unif_init_mag',
'cell_type',
'max_enc_steps',
'max_dec_steps',
'single_pass',
'data_path',
'num_models',
'trunc_norm_init_std',
]
hps_dict = {}
for key, val in FLAGS.__flags.iteritems(): # for each flag
if key in hparam_dis: # if it's in the list
hps_dict[key] = val # add it to the dict
hps_dis = namedtuple("HParams4Dis", hps_dict.keys())(**hps_dict)
if FLAGS.mode == "train_gan":
hps_gen = hps_gen._replace(batch_size=hps_gen.batch_size * hps_dis.num_models)
with tf.variable_scope("generator"), tf.device("/gpu:0"):
generator = PointerGenerator(hps_gen, enc_vocab, dec_vocab)
print("Building generator graph ...")
gen_decoder_scope = generator.build_graph()
if FLAGS.mode == 'train_gan' and FLAGS.dis_reward_ratio:
with tf.variable_scope("discriminator"), tf.device("/gpu:0"):
discriminator = Seq2ClassModel(hps_dis)
print("Building discriminator graph ...")
discriminator.build_graph()
hparam_gan = [
'mode',
'model_dir',
'gan_iter',
'gan_dis_iter',
'gan_lr',
'rollout_num',
'sample_num',
'rouge_reward_ratio',
'dis_reward_ratio',
"rollout_start",
'subtract',
]
hps_dict = {}
for key, val in FLAGS.__flags.iteritems(): # for each flag
if key in hparam_gan: # if it's in the list
hps_dict[key] = val # add it to the dict
hps_gan = namedtuple("HParams4GAN", hps_dict.keys())(**hps_dict)
hps_gan = hps_gan._replace(mode="train_gan")
if FLAGS.mode == 'train_gan':
with tf.device("/gpu:0"):
print("Creating rollout...")
rollout = Rollout(generator, 0.8, gen_decoder_scope)
# --------------- initializing variables ---------------
all_variables = tf.get_collection_ref(tf.GraphKeys.GLOBAL_VARIABLES) + \
tf.get_collection_ref(tf.GraphKeys.WEIGHTS) + \
tf.get_collection_ref(tf.GraphKeys.BIASES)
sess = tf.Session(config=utils.get_config())
# sess = tf_debug.LocalCLIDebugWrapperSession(sess)
# sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
sess.run(tf.variables_initializer(all_variables))
if FLAGS.mode == "pretrain_gen":
print("Restoring the generator model from the latest checkpoint...")
var_list = [v for v in all_variables if "generator" in v.name]
gen_newly_added = []
# add the newly added variables here
for vn in gen_newly_added:
var_list = [v for v in var_list if vn not in v.name]
gen_saver = tf.train.Saver(max_to_keep=3, var_list=var_list)
gen_val_saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
gen_dir = ensure_exists(join_path(FLAGS.model_dir, "generator"))
# gen_dir = ensure_exists(FLAGS.model_dir)
# temp_saver = tf.train.Saver(
# var_list=[v for v in all_variables if "generator" in v.name and "Adagrad" not in v.name])
ckpt_path = utils.load_ckpt(gen_saver, sess, gen_dir, mode="train")
print('going to restore embeddings from checkpoint')
if not ckpt_path:
emb_path = join_path(FLAGS.model_dir, "generator", "init_embed")
ckpt_state = tf.train.get_checkpoint_state(emb_path)
if ckpt_state:
ckpt = ckpt_state.model_checkpoint_path
try:
generator.dec_emb_saver.restore(sess, ckpt)
print(colored("successfully restored embeddings for decoder form %s" % emb_path, 'green'))
except:
print(colored("Failed to restore embeddings for decoder in %s" % emb_path, 'red'))
try:
generator.enc_emb_saver.restore(sess, ckpt)
print(colored("successfully restored embeddings for encoder form %s" % emb_path, 'green'))
except:
print(colored("Failed to restore embeddings for encoder in %s" % emb_path, 'red'))
else:
print(colored("No embeddings restored in %s" % emb_path, 'red'))
elif FLAGS.mode in ["decode", "train_gan"]:
print("Restoring the generator model from the best checkpoint...")
dec_saver = tf.train.Saver(
max_to_keep=3, var_list=[v for v in all_variables if "generator" in v.name])
val_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator', FLAGS.val_dir))
model_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator', 'val'))
gan_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator', FLAGS.gan_dir))
gan_val_dir = ensure_exists(join_path(FLAGS.model_dir, 'generator', FLAGS.gan_dir, "val"))
gan_newly_added = []
# add the newly added variables here
var_list = [v for v in all_variables if "generator" in v.name]
for vn in gan_newly_added:
var_list = [v for v in var_list if vn not in v.name]
gan_saver = tf.train.Saver(max_to_keep=3, var_list=var_list)
# for the rouge or dis test
gan_val_saver = tf.train.Saver(max_to_keep=3, var_list=var_list)
# for the loss test
gen_val_saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
utils.load_ckpt(dec_saver, sess, model_dir, mode="val", force=True)
decoder = Decoder(sess, generator, dec_vocab)
if FLAGS.mode == "train_gan" and FLAGS.dis_reward_ratio:
dis_saver = tf.train.Saver(
max_to_keep=3, var_list=[v for v in all_variables if "discriminator" in v.name])
dis_dir = ensure_exists(join_path(FLAGS.model_dir, 'discriminator'))
mode = "val"
# ckpt = utils.load_ckpt(dis_saver, sess, dis_dir, mode=mode, force=(FLAGS.mode == "train_gan"))
ckpt = utils.load_ckpt(dis_saver, sess, dis_dir, mode=mode, force=False)
del mode
# --------------- train models ---------------
if FLAGS.mode != "decode":
gen_batcher_train = GenBatcher("train", "train", enc_vocab, dec_vocab, hps_gen)
gen_batcher_val = GenBatcher("val", "val", enc_vocab, dec_vocab, hps_gen)
if FLAGS.mode == "decode":
decoder_batcher = GenBatcher("test", "test", enc_vocab, dec_vocab, hps_gen)
if FLAGS.mode == "train_gan":
# only for the gan bs rouge test
gan_batcher_test = GenBatcher("mini_v", "val", enc_vocab, dec_vocab, hps_gen)
# gan_batcher_val = GenBatcher("val", "val", enc_vocab, dec_vocab, hps_gen)
if FLAGS.mode == "pretrain_gen":
# get reload the
print('Going to pretrain the generator')
try:
with tf.device("/gpu:0"):
pretrain_generator(generator, gen_batcher_train, sess, gen_batcher_val, gen_saver, gen_val_saver)
except KeyboardInterrupt:
tf.logging.info("Caught keyboard interrupt on worker....")
elif FLAGS.mode == "train_gan":
gen_best_loss = get_best_loss_from_chpt(val_dir)
gen_global_step = 0
print('Going to tune the two using Gan')
ave_rouge = decoder.bs_decode(gan_batcher_test, save2file=False, single_pass=True)
best_rouge = ave_rouge
print(colored('The starting rouge score is %s.' % ave_rouge, "green"))
for i_gan in range(hps_gan.gan_iter):
# Train the generator for one step
g_losses = []
current_speed = []
# for it in range(0):
gan_gen_iter = 0 if FLAGS.dis_reward_ratio else 2
# Train the discriminator
dis_best_loss = 1000
dis_losses = []
gan_dis_iter = hps_gan.gan_dis_iter if hps_gan.dis_reward_ratio else 0
if gan_dis_iter:
print('\nGoing to train the discriminator.')
for d_gan in range(gan_dis_iter):
f1 = []
pre = []
rec = []
batch = gen_batcher_train.next_batch()
_, n_samples, _ = decoder.mc_generate(
batch, s_num=hps_gan.sample_num)
assert np.array(n_samples).shape == (hps_gan.sample_num,
hps_gen.batch_size,
hps_gen.max_dec_steps + 1)
n_samples_no_start = np.array(n_samples)[:, :, 1:]
# shuould first tanslate to words to avoid unk
n_samples = [samples for samples in n_samples_no_start]
for samples in n_samples:
emb_dec_batch = sess.run(
generator.temp_embedded_seq,
feed_dict={generator.temp_batch: batch.padded_abs_ids})
emb_conditions = sess.run(
generator.temp_embedded_seq,
feed_dict={generator.temp_batch: batch.enc_batch})
# feed_dict={generator.temp_batch: batch.padded_enc_batch})
_range = range(len(emb_dec_batch))
sattolo_cycle(_range)
indices = np.array(_range)
emb_samples = sess.run(
generator.temp_embedded_seq,
feed_dict={generator.temp_batch: samples})
emb_samples1, emb_samples2 = np.split(emb_samples, 2)
emb_dec_batch1, emb_dec_batch2 = np.split(emb_dec_batch[indices], 2)
emb_conditions1, emb_conditions2 = np.split(emb_conditions, 2)
enc_lens1, enc_lens2 = np.split(batch.enc_lens, 2)
inputs = np.concatenate([emb_samples1, emb_dec_batch, emb_dec_batch2], 0)
conditions = np.concatenate([emb_conditions1, emb_conditions, emb_conditions2], 0)
condition_lens = np.concatenate([enc_lens1, batch.enc_lens, enc_lens2], 0)
targets = [NEGATIVE_LABEL for _ in emb_samples1] + [POSITIVE_LABEL for _ in emb_dec_batch] + [NEGATIVE_LABEL for _ in emb_dec_batch2]
targets = np.array(targets)
assert len(inputs) == len(conditions) == len(condition_lens) == len(targets)
# randomize the samples
_range = range(len(inputs))
sattolo_cycle(_range)
indices = np.array(_range)
parts = 2
inputs = np.split(inputs[indices], parts)
conditions = np.split(conditions[indices], parts)
condition_lens = np.split(condition_lens[indices], parts)
targets = np.split(targets[indices], parts)
for p in range(parts):
results = discriminator.run_one_batch(sess, inputs[p], conditions[p], condition_lens[p], targets[p])
d_loss = results["loss"]
if not math.isnan(d_loss):
dis_losses.append(float(d_loss))
f1.append(results["f1"].item())
pre.append(results["precision"].item())
rec.append(results["recall"].item())
else:
print(colored('a nan in dis loss', 'red'))
print('inputs[p]')
print(inputs[p])
print('conditions[p]')
print(conditions[p])
print('condition_lens[p]')
print(condition_lens[p])
print('targets[p]')
print(targets[p])
raise
_f1 = sum(f1) / len(f1)
_recall = sum(rec) / len(rec)
_precision = sum(pre) / len(pre)
if d_gan % 300 == 0 or d_gan == hps_gan.gan_dis_iter - 1:
if (sum(dis_losses) / len(dis_losses)) < dis_best_loss:
dis_best_loss = sum(dis_losses) / len(dis_losses)
checkpoint_path = ensure_exists(join_path(hps_dis.model_dir, "discriminator")) + "/model.ckpt"
dis_saver.save(sess, checkpoint_path, global_step=results["global_step"])
print(
"\nDashboard for %s updated %s, finished steps:\t%s\n"
"\tBatch size:\t%s, learning rate:\t%s, model nums: \t%s\n"
"\tTraining loss:\t%.4f. Average training f1: \t%.4f\n"
"\tAverage training recall:\t%.4f. Average training precision: \t%.4f" % (
"GAN Discriminator",
datetime.datetime.now().strftime("on %m-%d at %H:%M"),
results["global_step"].item(),
hps_dis.batch_size,
results['learning_rate'],
hps_dis.num_models,
results["loss"].item(),
_f1, _recall, _precision
))
if not math.isnan(_f1) and _f1 > 0.9:
# eve_f1 = eval_dis(gan_batcher_test, decoder, discriminator)
gan_gen_iter = 1
break
if gan_gen_iter:
print('Going to train the generator, %s times.' % gan_gen_iter)
for it in range(gan_gen_iter):
start_time = time.time()
batch = gen_batcher_train.next_batch()
# generate samples
enc_states, n_samples, n_targets_padding_mask = decoder.mc_generate(
batch, s_num=hps_gan.sample_num)
assert np.array(n_samples).shape == (hps_gan.sample_num,
hps_gen.batch_size,
hps_gen.max_dec_steps + 1)
assert np.array(n_targets_padding_mask).shape == (hps_gan.sample_num,
hps_gen.batch_size,
hps_gen.max_dec_steps)
n_samples_no_start = np.array(n_samples)[:, :, 1:]
try:
n_rewards = rollout.get_reward(
hps_gan, sess, dec_vocab, batch, enc_states, n_samples,
discriminator if FLAGS.dis_reward_ratio else None)
except:
print('enc_states')
print(enc_states)
print('enc_states.shape')
print(enc_states.shape)
for st in enc_states:
print(st.shape)
raise
# fine tune the generator
n_sample_targets = np.array(n_samples)[:, :, 1:]
n_samples = np.array(n_samples)[:, :, :-1]
# sample_target_padding_mask = pad_sample(sample_target, gen_vocab, hps_gen)
# to show the reward for each word in the samle
if DEBUG:
for samples_no_start, rewards, targets_padding_mask in zip(n_samples_no_start, n_rewards, n_targets_padding_mask):
show_sample_reward(
outputsids2words(strip_pads(samples_no_start.tolist(), dec_vocab.word2id(STOP_DECODING)), dec_vocab),
rewards, targets_padding_mask)
results = generator.run_gan_batch(
sess, batch, n_samples, n_sample_targets, n_targets_padding_mask, n_rewards)
gen_global_step = results["global_step"]
# for visualization
g_loss = results["loss"]
if not math.isnan(g_loss):
g_losses.append(g_loss)
else:
print(colored('a nan in gan loss', 'red'))
current_speed.append(time.time() - start_time)
# Test
if gan_gen_iter and (i_gan % 1 == 0 or i_gan == hps_gan.gan_iter - 1):
print('\nGoing to test the loss of the generator.')
current_speed = (float(sum(current_speed)) + epsilon) / (int(len(current_speed)) * hps_gen.batch_size + epsilon)
everage_g_loss = (float(sum(g_losses)) + epsilon) / float(len(g_losses) + epsilon)
# one more process hould be opened for the evaluation
gen_eval_loss, gen_best_loss, eval_rouge, best_rouge = gan_save_ckpt(
sess, generator, decoder, gen_best_loss, best_rouge, gan_dir, gan_saver,
gen_batcher_val, gan_batcher_test, gan_val_dir, gan_val_saver,
gen_global_step, FLAGS.sample_rate)
if gen_eval_loss:
print(
"\nDashboard for " + colored("GAN Generator", 'green') + " updated %s, "
"finished steps:\t%s\n"
"\tBatch size:\t%s\n"
"\tDecoder vocabulary size:\t%s\n"
"\tEncoder vocabulary size:\t%s\n"
"\tCurrent speed:\t%.4f seconds/article\n"
"\tAverage GAN training loss:\t%.4f; "
"eval loss:\t%.4f\n"
"Average rouge %s; and the best rouge %s." % (
datetime.datetime.now().strftime("on %m-%d at %H:%M"),
gen_global_step,
hps_gen.batch_size,
hps_gen.dec_vocab_size,
hps_gen.enc_vocab_size,
current_speed,
everage_g_loss,
gen_eval_loss.item(),
eval_rouge, best_rouge
))
# --------------- decoding samples ---------------
elif FLAGS.mode == "decode":
print('Going to decode from the generator.')
decoder.bs_decode(decoder_batcher)
print("Finished decoding..")
# decode for generating corpus for discriminator
sess.close()
if __name__ == '__main__':
tf.app.run()