-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlearning.py
202 lines (173 loc) · 6.19 KB
/
learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Literal, Optional
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from aggregate_gradients import aggregate_all_params
from utils import green, save_model, save_stats_plots
def calc_accuracy(device, model, data_loader):
"""
Calculate the model's accuracy on the data, i.e., the percentage of successfully
predicted samples
"""
correct = 0
total = 0
model.to(device)
model.eval()
with torch.no_grad():
for batch in data_loader:
images, labels = batch[0], batch[1]
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
return accuracy
def train(
*,
device,
model,
epochs: int = 1,
defend: bool = False,
similarity: str = "cosine",
hard_threshold: Optional[float] = None,
quantile_threshold: Optional[float] = None,
#
train_loader: DataLoader,
test_loader_clean: Optional[DataLoader] = None,
test_loader_poisoned: Optional[DataLoader] = None,
#
should_save_model: bool = False,
model_file_name: Optional[str] = None,
#
should_save_stats: bool = False,
stats_file_name: Optional[str] = None,
plots_dir: str = "./plots/",
calc_stats_every_nth_iter: int = 10,
calc_stats_on_train_or_test: Literal["train", "test"] = "train",
):
print("training model...")
model.to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
criterion = nn.CrossEntropyLoss(**({"reduction": "none"} if defend else {}))
accuracies = []
attack_success_rates = []
avg_weight_poisoned_list = []
for _ in tqdm(range(epochs), desc="epoch"):
for i, batch in enumerate(tqdm(train_loader, desc="batch")):
if len(batch) == 2:
images, labels = batch
images, labels = images.to(device), labels.to(device)
else:
images, labels, is_poisoned = batch
images, labels, is_poisoned = (
images.to(device),
labels.to(device),
is_poisoned.to(device),
)
# Forward pass
model.train()
outputs = model(images)
loss = criterion(outputs, labels)
if defend:
avg_weight_poisoned = defense(
loss,
optimizer,
model,
labels,
is_poisoned,
i,
similarity,
hard_threshold,
quantile_threshold,
)
else:
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
if should_save_stats and (i % calc_stats_every_nth_iter == 0):
if calc_stats_on_train_or_test == "train":
correct = outputs.argmax(dim=1) == labels
not_poisoned = correct[~is_poisoned]
poisoned = correct[is_poisoned]
accuracy = (not_poisoned.sum() / len(not_poisoned)).cpu()
rate = (poisoned.sum() / len(poisoned)).cpu()
else:
# compute accuracy on clean test dataset
accuracy = calc_accuracy(device, model, test_loader_clean)
# compute attack success rate on poisoned test dataset
rate = calc_accuracy(device, model, test_loader_poisoned)
accuracies.append(accuracy)
attack_success_rates.append(rate)
if defend:
avg_weight_poisoned_list.append(avg_weight_poisoned)
tqdm.write(
green(
f"i={i}: accuracy {accuracy}, attack success rate {rate}, avg_weight_poisoned {avg_weight_poisoned}"
)
)
else:
tqdm.write(
green(f"i={i}: accuracy {accuracy}, attack success rate {rate}")
)
print("done training!")
if should_save_stats:
save_stats_plots(
stats_file_name,
plots_dir,
accuracies,
attack_success_rates,
calc_stats_every_nth_iter,
avg_weight_poisoned_list if defend else None,
)
if should_save_model:
save_model(model, model_file_name)
def defense(
losses,
optimizer,
model,
labels,
is_poisoned=None,
batch_idx=1,
similarity="cosine",
hard_threshold=None,
quantile_threshold=None,
):
# Initialize a list to hold the gradients for each sample
gradients = []
# Backward pass for each sample
for loss in losses:
optimizer.zero_grad(set_to_none=True)
loss.backward(retain_graph=True)
# Save the gradients for each sample
gradients.append(
{name: param.grad.clone() for name, param in model.named_parameters()}
)
if similarity == "l2":
similarity = lambda grads, mean: torch.norm(grads - mean, dim=1)
elif similarity == "cosine":
similarity = F.cosine_similarity
else:
raise NotImplementedError
# aggregated_gradients, avg_weight_poisoned = aggregate_gradients_cosine(gradients, labels, is_poisoned, plot=(i==0))
aggregated_gradients, avg_weight_poisoned = aggregate_all_params(
gradients,
labels,
is_poisoned,
plot=False,
# plot=(batch_idx == 0),
save_gradients=False,
name_to_save=f"batch_{batch_idx}",
similarity=similarity,
hard_threshold=hard_threshold,
quantile_threshold=quantile_threshold,
)
# Apply the aggregated gradients
optimizer.zero_grad()
for name, param in model.named_parameters():
param.grad = aggregated_gradients[name]
optimizer.step()
return avg_weight_poisoned