
Date of Issue :

2 2 / 0 5 / 2 0 19

w h i t e p a p e r
E C L I P S E M I C R O P R O F I L E
W H I T E P A P E R 2 0 1 9

Ec l ipse
M i croProf i le

02 03

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Lets do this!

A Technical Focus
This whitepaper discusses popular programming
patterns that streamline microservices
development. MicroProfile addresses those
patterns by leveraging and extending a
developer’s existing skillset. For the sake of
brevity, a developer will be referred to in its
plural form: we.

Microservices is the most popular architecture
when creating cloud-native applications. It
significantly shortens the time to market of new
application features by changing, testing and
deploying each service, individually, without
affecting other services. A well-designed and

MicroProfile enables Java EE developers to
leverage their existing skill set while shifting
their focus from traditional 3-tier applications
to microservices. MicroProfiles APIs establish
an optimal foundation for developing
microservices-based applications by adopting a
subset of the Java EE standards and extending
them to address common microservices
patterns.

MicroProfile specifications include:

MicroProfile Config

MicroProfile Fault Tolerance

MicroProfile Health Check

MicroProfile Metrics

MicroProfile Open API

MicroProfile Rest Client

MicroProfile JWT Authentication

MicroProfile Open Tracing API

right-sized microservices architecture can help
engineer an application that is stable, scalable
and fault tolerant.

Unfortunately, those benefits come at the
expense of additional complexities for which
typical Enterprise Computing Frameworks
like Java EE, now Jakarta EE, are not
appropriate. Although each microservice can
be implemented easily, managing, securing, and
monitoring a highly distributed collection of
microservices is complex. This is among others
mainly because of there is lack of a centralized
runtime in the design of any distributed system.

A benefit of adopting MicroProfile is that its
eight specifications (at the moment of writing)
are community driven, free, and open which
encourages and has resulted in multiple
implementations. Multiple implementations
eliminates the risk of vendor lock-in and
maintains the developers’ freedom of choice.
In addition, MicroProfile continues to evolve
delivering roughly three annual releases,
offering an opportunity to include both new
and updated specifications to keep pace with
developer needs.

All this is possible because of the great
engagement and the collaborative work of the
permanent growing MicroProfile community
as excellent described by Mike Croft in his blog
post “The MicroProfile turns one”.

AN OPEN FORUM TO OPTIMIZE ENTERPRISE JAVA FOR A
MICROSERVICES ARCHITECTURE BY INNOVATING ACROSS MULTIPLE

IMPLEMENTATIONS & COLLABORATING ON COMMON AREAS OF
INTEREST WITH A GOAL OF STANDARDIZATION.”

THE MISSION OF MICROPROFILE

https://github.com/eclipse/microprofile-config
https://github.com/eclipse/microprofile-fault-tolerance
https://github.com/eclipse/microprofile-health
https://github.com/eclipse/microprofile-metrics
https://github.com/eclipse/microprofile-open-api
https://github.com/eclipse/microprofile-rest-client
https://github.com/eclipse/microprofile-jwt-auth
https://github.com/eclipse/microprofile-opentracing

04 05

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

?

W h y
M i c r o s e r v i c e s ?

The difficulties associated with developing, testing, fixing, and
updating applications has relegated big monolithic applications
to the past. Today, application architecture must support agile
and continuous development by decomposing systems into
smaller services focused on specific business domains. These
domain-specific services can then be developed and modified
independently according to evolving business needs, without
impacting the system as a whole.

Decomposing a monolith into independent microservices
on the whole or only partially while leaving the remaining
functionality unchanged has many advantages. For
example, each microservice is easy to understand, develop
and maintain. A microservice can be deployed, scaled and
run independently. Local changes can be done without
the risk of unanticipated side-effects and potential faults
are isolated by definition thanks to the microservices
boundaries. Such advantages help shorten the time to
market by facilitating advanced agility.

Unfortunately, a single application that consists of tens
or maybe hundreds of microservices can also have its
drawbacks. As mentioned before managing, securing, and
monitoring a highly distributed collection of microservices
with no central runtime, management or monitoring
instance is complex. F I G U R E D E M O N S T R A T I N G

T H E B E N E F I T O F A
D E C O M P O S E D S Y S T E M
A . K . A . M I C R O S E R V I C E S

06 07

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Example Use-Case:
MicroProfile
e-Commerce
Let’s take a look at a simple microservices-based, web-application called
“MicroProfile e-Commerce”:

With the help of the e-Commerce solution, currently customers can search for products, add them to
their virtual shopping cart, and check-out at any time.

TO IMPLEMENT ABOVE ACTIVITIES REQUIRES AT LEAST
FOUR SERVICES:

>> a customer service that allows customer registration and self-administration;

>> a catalogue service that maintains the available products;

>> a cart service that manages the customers shopping carts;

>> a payment service that enables the customers to pay during check-out

 (*The following use case description is simplified for a better understanding)

During check-out, the application has to do several things in parallel.

1. Check the availability of the requested product via inventory service.

2. Fulfill the payment via payment service.

3. Trigger the physical shipment via shipment service.

Each service, detailed above, by itself seems to be quite easy to implement, test,
deploy and monitor. However what happens when it come to real life use-cases
where services interact?

LET’S TAKE A DEEPER LOOK AT ONE USE-CASE:
SHOPPING CART CHECK-OUT*.

IN ADDITION WE WILL NEED …

>> an inventory service that helpsmaintain the products availability or inventory;

>> a shipping service for the products’ delivery;

>> a search service for an optimized highperformance product search; and

>> a recommendation service for personalized product recommendations.

08 09

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

pressing the “checkout” button the service
creates a domain event “checkout initiated
for customer Y and product X” which will be
consumed by the inventory service. After
checking the availability of the requested
product, the inventory service will reserve the
product and create a second domain event
“product X reserved for customer Y” by itself.
This domain event again is the signal for the
payment service to fulfill the payment and
create a third domain event “payment fulfilled
for customer Y and product X” which triggers
the physical shipment of the product to the
customer (via shipment service). Image 1
illustrates the choreography of the checkout
workflow.

a success response to the checkout service.
After receiving the response the checkout
service creates a second command to fulfill
the workflow which is “fulfill payment for
customer Y and product X” and sends it to
the payment service. And so on. Figure 2
illustrates the orchestration of the checkout
workflow.

ORCHESTR AT ION

CHOREOGRA PHY

In a choreography based approach the
workflow of the use-case is implicitly defined
by a sequence of domain events and service
actions. Each involved service signals a
successful or faulty fulfilment of its part of the
workflow via a corresponding domain event.
Other services may listen to this domain
event and start working on there part of the
workflow after receiving it.

Let’s assume that the cart service offers
a convenient API to trigger the checkout
workflow from the UI. After being called by

In an orchestration based approach the
orchestrating service sends commands to
the different services and receives their
responses. This could be done synchronously
via RESTful calls or asynchronously with the
help of queues.

After being called from the UI by pressing the
“checkout” button the cart service creates a
command “reserve product X for customer
Y” and sends it to the inventory service. The
inventory service tries to reserve the product
after receiving the request and sends back

Whether Choreography or Orchestration is used, there are still
a lot of additional things to take care of in a microservices-
based application. It is essential to make sure that each service
by itself as well as the the system as a whole is up and running
as expected from technical and functional point of view.

The coordination of the above mentioned steps can be
done in two different ways:

010 011

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Every system included in MicroProfile e-Commerce has a number of cross-cutting
concerns that need to be addressed such as logging, monitoring of service health and
metrics, fault tolerance, configuration, and security. In a microservices architecture, where
there is no central point of control, these cross-cutting concerns are challenging.

LOGGING
Since MicroProfile e-Commerce is spread across multiple microservices,
developers need a solution for distributed logging and tracing. Each
service must be able to log and trace its specific part of the processing
so that logging and tracing information across the system can be merged
automatically and can be analyzed as a whole.

RESILIENCE & FAULT TOLERANCE
As the number of services grows, the odds of any one service failing also
grows. If one of the involved services does not respond as expected, e.g.
because of fragile network communication, we have to compensate for
this exceptional situation. Therefore, we have to build up our microservices
architecture to be resilient and fault tolerant by design. This means we must
not only be able to detect but also to handle any issue automatically.

CONFIGURATION
The fact that there is no central runtime also implies that there is no single
point of configuration. Let’s assume that two of the involved microservices,
e.g. catalogue service and search service, share a company cloud account. In
that case, they may want to share a common configuration. Alternatively, it
may be helpful that a microservice can access configurations from multiple
sources in a homogeneous and transparent way.

AUTHENTICATION & AUTHORIZATION
During checkout, the customers of our MicroProfile e-Commerce solution
do not want to log in repeatedly to every participating microservice.
Instead, a mechanism to handle distributed authentication and authorization
is required. Due to the stateless character of microservices the solution
must offer security context propagation in a web-friendly way. In addition
the security solution must be verifiable to make sure that the original
service call is not forged in any way.

STANDARDIZED INTERFACE DOCUMENTATION
From the microservices developer‘s point of view, it is important to
understand how to interact with any of the other microservices and how
to test that the services APIs are still valid and backward compatible.
Therefore a standardized API documentation that can be also used for API
testing is needed.

HEALTH CHECKS & METRICS
Due to the fact that we do not have a single service and therefore no single
point of control, we also have to change the way we monitor our application
state. For each microservice we need to know if it is healthy (health check)
and performing as expected (metrics).

C r o s s - C u t t i n g
C o n c e r n s

012 013

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Up Up & Away

M i c r o P r o f i l e t o
t h e r e s c u e

One option is to find a separate solution
for each cross-cutting concern (e.g.
logging, tracing, health checks, metrics,
authentication, documentation). The
problem with this approach is that we
might end up in a bunch of incompatible
solutions that may not have been tested
together and are evolving without
consideration to other services, making
overall testing and version management
more difficult. In large organizations,
different teams may choose different

What we are looking for is a consistent and interoperable way to handle these
challenges without the risk of vendor lock-in. This is the mission of MicroProfile.
MicroProfile creates specifications that focus on portability and interoperability
while remaining vendor agnostic: Write once, run everywhere!

solutions for the same problem, making
it more difficult for developers to switch
projects.

Another approach is to find an “all-
around package” that addresses many
cross-cutting concerns. Yet an all-in-one
solution could result in vendor lock-in
constraining organizations to the release
schedule and capabilities of a single
vendor.

Writing a single Microservice is simple and can easily be done with the help of
the Java EE Standard, because Java EE has the APIs we need:

MicroProfile’s mission is to close the gap
between the Java Enterprise Standard and
the real-life challenges of microservices
architectures.

The community has been using Enterprise
Java technologies like Java EE, today re-
branded as Jakarta EE, within microservices
architectures in innovative ways for quite
a while (see Jakarta EE Community Survey
for details)! While the community members
have been innovating independently,
MicroProfile now allows Open Source
collaboration and innovation wherever
there is a commonality. By leveraging these
commonalities, such as the afore-mentioned
cross-cutting concerns, within a baseline

platform, developers will continue to
benefit from rapid innovation, application
portability, and interoperability, with
multiple vendors to choose from.

Vendors, the community, and open source
projects bring their solutions to the real
world while at the same time collecting
the feedback of the end users. In common
areas, where there is enough stability and
functionality individual solutions can result
in standardization.

CDI 2.0 for Dependency Injection

JAX-RS 2.1 for REST APIs

JSON P 1.1 for JSON Parsing

JSON-B 1.0 for JSON Binding

To name a few...

After pointing out the cross-cutting concerns in a
microservices application, the big question is how do
we deal with these concerns?

https://jakarta.ee/
https://jakarta.ee/news/2018/04/24/jakarta-ee-community-survey/

014 015

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

power

What is under
the MicroProf i le
hood?

I M A G E S H O W I N G T H E E V O L U T I O N O F
T H E M I C R O P R O F I L E I T S E L F & I T S A P I S

The MicroProfile project specifies several solutionblocks
- a.k.a. APIs - each of them addressing a specific topic.

F I G U R E

https://github.com/eclipse/microprofile

016 017

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

1.3
MicroProfile Config (also known as
ConfigJSR), externalizes application
configuration by providing microservices
with the means to obtain configuration
properties through several environment-
aware sources. These sources can be
accessed in parallel both internal and
external to the application and made
available through dependency injection
or lookup in a unified way. MicroProfile
Config also allows developers to
implement and register their own
configuration sources in a portable way,
e.g. for reading configuration values
from a shared database in an application
cluster.

Microservices often contain functionality
that behaves slightly differently
depending on the deployment. This
might be different REST endpoints
(e.g. depending on the customer for
whom a WAR is deployed). Or it might
even be entire features that need to be

switched on and off depending on the
installation. Regardless of it deployment,
microservices ought to be possible
without the need to repackage the
whole application binary.

ConfigJSR provides type-safe injection
of configuration properties, no matter
which configuration source they
originate from. Developers can decide
if the configuration properties should
be read at service or application start
or just-in-time with a given refresh rate.
Default and custom converters take the
responsibility for the type conversion
needed to guarantee type-safeness.

The following example shows how to use Config via injection to configure the shopping
cart service of our MicroProfile e-Commerce application: M I C R O P R O F I L E

C O N F I G U R A T I O N
// inject a boolean property

@Inject @ConfigProperty(„ONE _ CLICK _ CHECKOUT _ ALLOWED _ KEY“)

Boolean oneClickCheckoutAllowed;

// inject property with default value

@Inject @ConfigProperty(„MAX _ ITEM _ COUNT _ KEY“, defaultValue=”100”)

Integer maxItemCount;

// inject a custom class property

@Inject @ConfigProperty(„MINIMUM _ AMOUNT _ KEY”)

Amount minimumAmount;

Listing: Examples of
MicroProfile
Configuration usage.

https://github.com/eclipse/microprofile-config

018 019

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

2.0
MicroProfile Fault Tolerance enables us to build resilient microservices
by separating the execution logic from business logic. Key aspects of the
Fault Tolerance API include TimeOut, RetryPolicy, Fallback, Bulkhead, and
Circuit Breaker processing.

In a distributed system, like a microservices-based architecture, it is
increasingly important to build in fault tolerance by default. Fault tolerance
is about leveraging different strategies to guide the execution and result
of some logic. Retry policies, bulkheads, and circuit breakers are popular
concepts in this area. They dictate whether and when executions should
take place, while fallbacks offer an alternative result when an execution
does not complete successfully.

The main design of MP Fault Tolerance is to separate the execution logic
from execution. The execution can be configured with fault tolerance
policies, such as RetryPolicy, Fallback, Bulkhead and CircuitBreaker. The
Fault Tolerance specification defines a standard API and approach for
applications to follow in order to achieve resilience.

The following example shows a simple timeout and fallback scenario. If the originally
called method getAllProducts could not handle the request within a given period of
time the fallback method, getAllProductsCallback, is called automatically.

M I C R O P R O F I L E
F A U L T T O L E R A N C E

@GET

@Timeout(500)

@Fallback(fallbackMethod = “getAllProductsFallback”)

public Response getAllProducts() throws InterruptedException {

 // retrieve products, e.g. via database access

 …

}

public Response getAllProductsFallback() {

 // retrieve products from alternative source, e.g. cached values

 …

}

[QUESTION: insert image to demonstrate the “lifecycle” of
a resilient microservice call including fallback?]

Listing: Example of MicroProfile Fault Tolerance usage.

https://github.com/eclipse/microprofile-fault-tolerance

020 021

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

 1.0
Microprofile Health Check lets
developers define and expose a
domain-specific microservices health
status (“UP” or “DOWN”) so unhealthy
services can be restarted by the
underlying environment. Health Check
is a “machine-to-machine” API, where
orchestration services like Kubernetes
can automatically detect and restart
unhealthy services without manual
intervention.

Health checks are used to determine
both the liveness and readiness of a
service. Even though a service may
be “live” and running it may not yet
be ready to accept traffic, such as

when a database connection is being
established. This has a direct impact
on the traffic routing, because traffic
should only be directed to a service that
is both live and ready. The MicroProfile
Health Check has been designed with
Kubernetes, Cloud Foundry and Mesos
in mind, so leveraging the provided
orchestrator features is natural.

Determining the state of a service is often more complex than checking whether an
HTTP endpoint is available. It can be composed by a set of verification procedures.
Multiple domain-specific health checks can easily be added to a microservice by
implementing the corresponding HealthCheck interface. MicroProfile Health Check
discovery and compose these procedures to compute the overall outcome.

The following example demonstrates how to implement a simple readiness check
to make sure that the connection pool of the customer service of our MicroProfile
e-Commerce example is up and running as expected:

Listing: Example of MicroProfile Fault Tolerance usage.

M I C R O P R O F I L E
H E A L T H C H E C K

@Health

@ApplicationScoped

public class CustomerServiceConnectionPoolCheck implements

HealthCheck {

 @Override

 public HealthCheckResponse call() {

 if (isConnectionPoolHealthy()) {

 return HealthCheckResponse(“customer-cp”).up().

build();

 } else {

 return HealthCheckResponse(“customer-cp”).down().

build();

 }

 }

 // check that there is no connection shortage

 private boolean isConnectionPoolHealthy() { … }

}

https://github.com/eclipse/microprofile-health

022 023

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

MicroProfile Metrics delivers details about the microservices runtime
behavior by providing a unified way for MicroProfile servers to export
monitoring data to management agents. Metrics also provides a
common Java API for exposing their telemetry data.

In order to run a service reliably developers need monitoring. There
is already JMX as a standard to expose metrics, but remote-JMX is
not easy to deal with and does not fit well in a polyglot environment
where other services are not running in a JVM environment.

To enable monitoring in such a polyglot environment it is necessary
that all MicroProfile implementations follow a certain standard with
respect to the (base) API path, data types involved, always available
metrics, and return codes used.

Metrics serves to pinpoint issues, providing long-term trend data for
capacity planning, and pro-active discovery of issues (e.g. disk usage
growing without bounds) via a simple to use RESTful API. Metrics can
also help scheduling-systems decide when to scale the application to
run on more or fewer machines.

1.1The following example demonstrates how
to measure the duration of the check-
out process of our example application
MicroProfile e-Commerce:

Listing: Examples of MicroProfile Metrics usage
via annotations.

To be able to differentiate common metrics
from vendor or application specific metrics,
MP Metrics also supports three different sub-
resources (aka scopes):
base: metrics that all MicroProfile

vendors have to provide

vendor: vendor specific metrics

(optional)

application: application-specific

metrics (optional)

@POST

@Produces(MediaType.APPLICATION _ JSON)

@Timed(absolute = true,

 name = „microprofile.ecommerce.

checkout“,

 displayName = „check-out time“,

 description = „time of check-

out process in ns“,

 unit = MetricUnits.NANOSECONDS)

public Response checkOut(...) {

 // do some check-out specific

business logic

 ...

 return Response.ok()… build();

}

M E T R I C S S U P P O R T S
D I F F E R E N T D A T A T Y P E S : 1.1M I C R O P R O F I L E

M E T R I C S COUNTER:
an incrementally increasing or
decreasing numeric value (e.g. total
number of requests received or the
total number of concurrently active
HTTP sessions).

GAUGE:
a metric that is sampled to obtain its
value (e.g. CPU temperature or disk
usage).

METER:
a metric which tracks mean throughput
and one-, f ive-, and fif teen-minute
exponentially-weighted moving
average throughput (e.g. number of
calls a function processes).

HISTOGRAM:
a metric which calculates the
distribution of a value (e.g. items
per checkout in an e-commerce
application).

TIMER:
a metric which aggregates timing
durations and provides duration
statistics, plus throughput statistics
(e.g. response time or calculation time
of complex logic).

https://github.com/eclipse/microprofile-metrics

024 025

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

[QUESTION: insert
image equivalent to the
architectural overview
of the specification to

demonstrate the flexibility
of this mechanism?]

1.1M I C R O P R O F I L E
O P E N A P I

Exposing APIs has become an essential
part of all modern applications. At the
center of this revolution known as the
API Economy, we find RESTful APIs,
which transforms any application into
language-agnostic services that can be
called from anywhere: on-premises,
private cloud, public cloud, etc.

For the clients and providers of these
services to connect, there needs to be
a clear and complete contract. Similar
to the WSDL contract for legacy Web
Services, the OpenAPI Specification
(OAS) is the contract for RESTful
Services.

OAS defines a standard, programming
language-agnostic interface description
for REST APIs, which allows both
humans and computers to discover and
understand the capabilities of a service
without requiring access to source code,
additional documentation, or inspection
of network traffic. The description can
be understood as a clear and complete
contract.

The MicroProfile Open API specification
provides a set of Java interfaces
and programming models that allow
developers to natively produce OpenAPI
v3 documents.

 » Augment existing JAX-RS annotations
with the OpenAPI Annotations. Using
annotations means developers don’t have
to re-write the portions of the OpenAPI
document that are already covered by the
JAX-RS framework (e.g. the HTTP method
of an operation).

 » Take the initial output from OpenAPI
as a starting point to document APIs
via Static OpenAPI files. It’s worth
mentioning that these static files can also
be written before any code, which is an
approach often adopted by enterprises
that want to lock-in the contract of the
API. In this case, we refer to the OpenAPI
document as the „source of truth“, by
which the client and provider must abide.

 » Use the Programming model to provide
a bootstrap (or complete) OpenAPI model
tree. Additionally, a Filter is described
which can update the OpenAPI model
after it has been built from

T H E A P P L I C A T I O N
D E V E L O P E R S H A V E
A F E W C H O I C E S :

https://github.com/OAI/OpenAPI-Specification
https://github.com/eclipse/microprofile-open-api

026 027

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

1.2M I C R O P R O F I L E
R E S T C L I E N T

MicroProfile Rest Client simplifies
building REST Clients by providing a
type-safe approach for invoking RESTful
services over HTTP. The MicroProfile
Rest Client builds upon the JAX-RS 2.1
APIs for consistency and ease-of-use.

Using MicroProfile Rest Client to write
client applications allows for a more
natural and model-centric coding style,
while the underlying implementation
handles the communication between
client and service by automatically
making the HTTP connection and
serializing the model object to JSON (or
XML etc.), so that the remote service can
process it.

Rest Client allows developers use plain
Java interfaces to invoke a RESTful
service. It specifies the mapping
between a method on an interface
and a REST request using existing
JAX-RS annotations. In many cases, an
annotated client interface looks very
much like the corresponding REST

resource. It’s easy to reuse the same
REST client to avoid code duplication.
A REST Client interface is also a very
natural way to specify and document
the contract between the client and the
RESTful service. Using Rest Client thus
reduces a lot of boilerplate constructs
and leads to a cleaner code.

Rest Client allows developers use plain
Java interfaces to invoke a RESTful
service. It specifies the mapping
between a method on an interface
and a REST request using existing
JAX-RS annotations. In many cases, an
annotated client interface looks very
much like the corresponding REST
resource. It’s easy to reuse the same
REST client to avoid code duplication.
A REST Client interface is also a very
natural way to specify and document
the contract between the client and the
RESTful service. Using Rest Client thus
reduces a lot of boilerplate constructs
and leads to a cleaner code.

For example, to invoke the checkout process from another service, the service only
needs to define a Java interface with appropriate annotations. Then a container or a
builder will create a proxy capable of mapping between method invocations and REST
requests. Knowing the JAX-RS API, this is very straightforward:

Interfaces annotated with
@RegisterRestClient can be simply injected into any CDI bean with the
@RestClient qualifier annotation, for example:

@Inject @RestClient

ShoppingServiceClient shopping;

Location of the RESTful service depends on the environment. It needs to be provided as
a Microprofile Config configuration property. The name of the property is derived from
the full class name of the interface and the property specifies the location for all injected
proxies.

If needed, a proxy for the interface can be created programmatically with a builder. This
also allows specifying the location for each proxy separately:

@RegisterRestClient

@Path(„/shopping“)

public interface ShoppingServiceClient {

 @POST

 @Path(„/checkout“)

 @Produces(MediaType.APPLICATION _ JSON)

 public Response checkOut(...);

}

ShoppingServiceClient shopping = RestClientBuilder.newBuilder()

 .baseUri(new URI(„http://localhost:8080/“))

 .build(ShoppingServiceClient.class);

https://github.com/eclipse/microprofile-rest-client
https://github.com/jax-rs
https://github.com/jax-rs

028 029

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

1.1M I C R O P R O F I L E
J W T

MicroProfile JWT Authentication
defines a format of JSON Web
Token (JWT) used as the basis for
interoperable authentication and
authorization by providing role-based
access control (RBAC) microservice
endpoints using OpenID Connect
(OIDC).

The security requirements that involve
microservice architectures are strongly
related with RESTful Security. In a
RESTful architecture style, services are
usually stateless and any security state
associated with a client is sent to the
target service on every request. This
allows services to re-create a security
context for the caller and perform both
authentication and authorization checks.

One of the main strategies to propagate
the security state from clients to
services, or even from services to
services, involves the use of security
tokens. In fact, the main security
protocols in use today are based
on security tokens such as OAuth2,
OpenID Connect, SAML, WS-Trust,
WSFederation and others. While some
of these standards are oriented to
identity federation, they all share a
common concept regarding security
tokens and token-based authentication.

Today, the most common solutions involving RESTful and microservices security are based
on OAuth2, OpenID Connect (OIDC) and JSON Web Tokens (JWT) standards.

MP JWT heavily relies on the above standards, therefore it offers an API making it very
easy to access, verify and propagate JSON Web Tokens in a Java Security compatible way.

 » Services don’t need to store any state
about clients or users.

 » Services can verify the token validity.

 » Services can identify the caller by
introspecting the token.

 » Services can enforce authorization
policies based on any information within a
security token

 » Services need support both delegation
and impersonation of identities.

F O R R E S T F U L B A S E D M I C R O S E R V I C E S , S E C U R I T Y

T O K E N S O F F E R A V E R Y L I G H T W E I G H T A N D

I N T E R O P E R A B L E W A Y T O P R O P A G A T E I D E N T I T I E S

A C R O S S D I F F E R E N T S E R V I C E W H E R E A T O K E N

F O R M A T I S W E L L K N O W N O R S E R V I C E S C A N I N V O K E

A S E P A R A T E S E R V I C E S S O T H A T :

https://github.com/eclipse/microprofile-jwt-auth
http://openid.net/connect/
https://tools.ietf.org/html/rfc6749
http://openid.net/connect/
https://tools.ietf.org/html/rfc7519

030 031

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

1.3M I C R O P R O F I L E
O P E N T R A C I N G

MicroProfile OpenTracing enables services to easily participate in a
distributed tracing environment by defining an API.

Distributed tracing is particularly important in a microservices
environment where a request typically flows through multiple services.
To accomplish distributed tracing, each service must be instrumented to
log messages with a correlation id that may have been propagated from
an upstream service. A common companion to distributed trace logging
is a service where the distributed trace records can be stored (see
also examples on opentracing.io). The storage service for distributed
trace records can provide cross service trace records associated with
particular request flows.

The OpenTracing project’s purpose is to provide a standard API
for instrumenting microservices for distributed tracing. If every
microservice is instrumented for distributed tracing using the
OpenTracing API, then (as long as an implementing library exists for
the microservice’s language), the microservice can be configured at
deploy time to use a common system implementation to perform the
log record formatting and cross-service correlation id propagation. The
common implementation ensures that correlation ids are propagated
in a way that is understandable to all services, and log records are
formatted in a way that is understandable to the server for distributed
trace record storage.

In order to make MicroProfile distributed tracing friendly, it allows
distributed tracing to be enabled on any MicroProfile application,
without having to explicitly add distributed tracing code to the
application.

https://github.com/eclipse/microprofile-opentracing
http://opentracing.io/

032 033

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

L e s s o n s l e a r n e d
f r o m r e a l - w o r l d
m i c r o s e r v i c e
a d o p t i o n
The companies that are using Java
microservices for their production
and even mission critical systems
come from different industries,
including energy, banking, insurance,
manufacturing, transport and logistics,
public administration, and others.

Companies are mainly using
microservices for two kinds of
projects, development of new digital

services and applications for digital
channels, and gradual migration of
existing applications from application
servers to microservices. With each
and every company that has adopted
microservices, we, at Kumuluz,
have observed one common thing –
developers simply love microservices.
In this section, we will share those
findings.

The first common use case is digital services and applications for mobile
and web applications that offer customers superb digital user experience,
customer engagement, social and IoT integration, and other aspects of
digital transformation. Such solutions typically require APIs on the backend,
REST APIs or event streaming. Microprofile microservices are the perfect
choice for implementing back-end for such applications. They are fast,
lightweight and easy to scale as they work perfectly with Docker and can
be deployed on Kubernetes-like environments, either on premise or hosted
in the cloud. With microservices, it is easier to achieve scalability, high
availability and resilience.

The major advantage for companies that have traditionally based their
developments on Java and Java EE (now Jakarta EE), is that the transition
from classic application servers to Microprofile is straightforward.
Developers skilled in Java/Java EE can start using Microprofile in relatively
short time, without having to learn new technologies, languages or APIs.

This brings us to the second common use case, the gradual migration
from application servers to microservices. Typical Java EE applications
are large and complex. They have been developed over longer periods
of time and often they are mission critical. Therefore companies cannot
afford to rewrite them for microservices. Migrating to Microprofile allows
to gradually transform a monolithic, application server based application
to microservices. A common practice is to develop major changes or new
functionalities that need to be added to such applications as microservices
(for example, common new functionalities for banking applications in
EU are PSD2 (Payment Service Directive 2) APIs), leaving the rest as-
is on the application server. Microprofile works hand-in-hand with
application servers. Another practice is to migrate certain functionalities to
microservices. Because Microprofile microservices are based on standard
Java EE, it is relatively easy to migrate existing code to microservices.
Best practices for migration are well known and provide easy migration of
REST and SOAP web services, CDI, JDBC, JPA, JMS and other common
technologies. Only EJBs may require some code refactoring with best
practice to migrate them to CDI.

034 035

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Microservices also allow companies to easily upgrade the version of Java. With new

versions of Java scheduled every six months, developers can choose a new version

of Java only for selected microservices and not migrate everything at once, which is

a common practice with application servers. Finally, adding other languages, such as

Node.js or Go, for selected functionalities is straightforward with microservices.

The experience of companies that have adopted microservices also shows that microservices require

automation of infrastructure and DevOps. It is almost impossible to gain benefits of microservices if

companies do not have DevOps in place and if their Continuous Delivery cycle is not fully automated.

Companies using Microprofile today have considerably improved their agility of the

development and shortened time to market. This is achieved with the appropriate

organization of their teams, organized around microservices allowing parallelization

of development – and deployment. In other words, teams work in parallel and

develop, deploy and test microservices independent of each other.

In conclusion, the experiences of companies that are using Microprofile in the production
for their mission critical systems, are mostly positive. The most important lesson is that
companies have to address all aspects of the microservice architecture. As more developers
are encouraged by their employers to do so, companies will definitely see the advantages in
both technology and business.

T H E B E N E F I T S O F M I C R O S E R V I C E S A R E
N O T L I M I T E D T O T E C H N O L O G Y R E L A T E D
A D V A N T A G E S O N L Y . T H E Y A L S O B R I N G
I M P O R T A N T O R G A N I Z A T I O N B E N E F I T S .

M I C R O S E R V I C E A P P R O A C H B R I N G S
C O N S I D E R A B L E T I M E S A V I N G A N D I M P R O V E S
A G I L I T Y A N D T I M E - T O - M A R K E T B Y O R D E R
O F M A G N I T U D E . T H I S I S S O M E T H I N G
B U S I N E S S P E O P L E L O V E T O S E E .

Business related advantages

Increased business agility and flexibility Fast, lightweight

Order of magnitude shorter time-to-market Scalable

Better fulfilment of business requirements Highly available, fault tolerant, resilien

Faster digital transformation

Parallel development and automation

Improved Business-IT alignment and lower

technical debt

Preserved existing investment in

technology and know-how

Docker and Kubernetes ready

Deployable on premise or cloud hosted

Easy migration from Java/Java EE to

microservices

Should be combined with DevOps,

Continuous Delivery and automated testing

Technolog y related advantages

ADVANTAGES OF MICROSERVICE ARCHITECTURE

036 037

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

C U R R E N T L Y A V A I L A B L E I M P L E M E N T A T I O N S

Unlike the Java Enterprise standard, MicroProfile does not have a reference implementation
but only TCKs (test compatibility kits) to pass. Each runtime provider is self-motivated to
implement new APIs as soon as possible and pass the corresponding TCK. At the moment of
writing this paper, eight vendors provide full or partial implementations of MicroProfile.

P a y a r a T o m i t r i b e

F u j i t s u

R e d H a t

H a m m o c k K u m u l u z

I B M

P a r t n e r
N e t w o r k

I N D I V I D U A L S , O R G A N I Z A T I O N S , V E N D O R S

The original MicroProfile efforts was kicked off and announced in late June 2016 by
Red Hat, IBM, Tomitribe, Payara and the London Java Community. A lot has happened
since then. MicroProfile v 1.0 was released on September 19, 2016. Its implementation
interoperability was demonstrated on November 2016 at Devoxx Antwerp, where Red
Hat, IBM, Tomitribe, and Payara demonstrated a unified web application with underlying
microservices which had been developed separately by each vendor using MicroProfile. In
addition, MicroProfile became part of the Eclipse Foundation as an incubation project back
in December 14, 2016. New members have joined MicroProfile, such as SOUJava, Hazelcast,
Fujitsu, Lightbend, Microsoft, Oracle, Hammock, and KumuluzEE.

Enterprise Java technologies like Java
EE have evolved with the industry
for nearly two decades to support
distributed application architectures
based on RMI/IIOP, Web Services, and
REST. MicroProfile is the next step in that
evolution.

In January 2017, MicroProfile became
an official Eclipse project. [or something
similar, you tell me how can i help you
here]-

MicroProfile is possible because of the
broad support from all its active members
and the extensive partner network.
The partner network gives the this
project a competitive advantage and the
opportunity to access a broader range of
resources and existing expertise. Payara Server

Payara Micro

Apache TomEE

Launcher

Thorntail (née WildFly Swarm)

Red Hat OpenShift Application Runtimes

Hammock KumuluzEE

Open Liberty
WebSphere Liberty

https://www.payara.fish/all_downloads
https://www.payara.fish/all_downloads
http://wildfly-swarm.io/
https://developers.redhat.com/products/rhoar/overview/
https://hammock-project.github.io
https://ee.kumuluz.com/
https://openliberty.io/
https://developer.ibm.com/wasdev/

038 039

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

Innovat ion &
S andboxing
The current version 2.1 of MicroProfile
has many serviceable features, enabling
it to address most of the challenges of a
microservices architecture. But there is
more to come.

As mentioned before the MicroProfile
approach allows interested parties and
partners to continue to innovate quickly
and efficiency while collaborating where
there is a commonality. Therefore
MicroProfile supports its community
by offering a sandbox for incubating
ideas and code examples that eventually
turn into new specifications in the
near future. The sandbox is meant
to experiment and share code and
documents and allow discussions with
the rest of the MicroProfile community.

After having reached an adequate
degree of maturity, the initiator of
the sandbox project can ask for a
MicroProfile repository and in this
way start the MicroProfile feature
init process. Of course experienced
MicroProfile project committers will
assist if desired.

The MicroProfile process by definition
facilitates the engagement of the
community while at the same time
preventing any kind of vendor lock-in.

Just to give an example, at the time of
writing, there are three sandbox projects
available and up for discussion for the
MicroProfile community.

S A N D B O X P R O J E C T “ R E A C T I V E ”

S A N D B O X P R O J E C T “ C O N C U R R E N C Y ”

S E R V I C E M E S H

The Reactive working group is defining several specification to make MicroProfile
applications more event-driven, asynchronous and efficient.

The Reactive Streams Operators specification propose a set of operator for
Reactive Streams. By mapping Java Streams API but for Reactive Streams, it
provide a natural API to deal with stream of data, enforcing error propagation,
completion signals, and back-pressure.

The Reactive Messaging proposal explores the question „what if Java offered
a new API for handling streams of messages - either point to point or from a
message broker - based on the JDK 9 Flow API or alternatively on the JDK8
compatible Reactive Streams API - that was lighter weight and easier to use than
JMS/MDBs“.

The proposal Concurrency introduces APIs - fully compatible with the EE
Concurrency specification - for obtaining CompletableFutures that are backed by
managed threads, with the ability to capture context from the thread that creates
the CompletableFuture and apply it when running the CompletionStage action.

Beneath the above described sandbox project there is an ongoing discussion if and
how MicroProfile could support Service Mesh solutions like Istio or Linkered.

Cloud Native microservices developed with MicroProfile can take advantage
of a Service Mesh by extracting many concerns away from the development of
the microservice itself and delegate it to the Service Mesh which is a dedicated
infrastructure layer for making service-to-service communication safe, fast
and reliable.

S A N D B O X P R O J E C T
“ L O N G R U N N I N G A C T I O N S ”
The proposal for Long Running Actions introduces APIs for services to coordi-
nate activities. The main thrust of the proposal introduces an API for loosely
coupled services to coordinate long running activities in such a way as to gua-
rantee a globally consistent outcome without the need to take locks on data.

https://github.com/eclipse/microprofile-sandbox
https://wiki.eclipse.org/MicroProfile/FeatureInit
https://wiki.eclipse.org/MicroProfile/FeatureInit
https://github.com/eclipse/microprofile-reactive-streams
https://github.com/eclipse/microprofile-reactive-messaging
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/concurrency
https://github.com/eclipse/microprofile-service-mesh
https://istio.io/
https://linkerd.io/
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/0009-LRA

040 041

Eclipse MicroProfile Whitepaper 2019 2019 Eclipse MicroProfile Whitepaper

S u m m a r y

F A Q

In addition, answers
frequently asked
questions while
starting to work with
the MicroProfile APIs
can be found at the
MicroProfile FAQs.

MicroProfile enables developers to substantially increase the productivity and the quality of
microservices-based applications. This is why MicroProfile was chosen as the winner of one
off the most important community awards in 2018, the Duke’s Choice Award.

To ensure that getting started with MicroProfile is as easy as possible, the MicroProfile
community has developed very helpful content, like tutorials, example applications, blog posts
or presentations.

I F Y O U A S K Y O U R S E L F ,

W H E N I S T H E B E S T T I M E T O S T A R T D E V E L O P I N G Y O U R
M I C R O S E R V I C E S - B A S E D A P P L I C A T I O N S U S I N G M I C R O P R O I L E ”
T H E A N S W E R I S N O W . B E C O M E P A R T O F A N

O U T S T A N D I N G C O M M U N I T Y & G I V E M I C R O P R O F I L E A T R Y .

P R O J E C T S
& S A M P L E S

To gain a deeper
understanding of the
different MicroProfile
projects and how to
use them correctly and
effectively, developers
can reference the
MicroProfile Projects
and the corresponding
MicroProfiles Samples.

B L O G

Newbies to MicroProfile
will find “getting
started” tutorials for
nearly every aspect of
the MicroProfile usage
inside the MicroProfile
Blog.

Microservices can significantly shorten
the time to market. In addition, they can
help to build an application that is more
stable, scalable and fault tolerant.

These benefits do not come for free.
Splitting up an application into tens or
hundreds of microservices will results
in a more complex operation scenario
due to the absence of a central runtime.
New challenges arise for which typical
Enterprise Computing Frameworks, like
Java EE, are not appropriate.

MicroProfile defines a programming
model for developing cloud-native
microservices-based applications and
enables Java EE developers to leverage
their existing skill set while shifting their
focus from traditional 3-tier applications
to microservices.

MicroProfiles APIs builds an optimal
bases for developing microservices-
based applications by adopting a subset
of the Java EE Standards and extending
them with new ones that address
common microservices patterns,
including:

MicroProfile Config

MicroProfile Fault Tolerance

MicroProfile Health Check

MicroProfile Metrics

MicroProfile Open API

MicroProfile Rest Client

MicroProfile JWT Authentication

MicroProfile Open Tracing API

B E S T T I M E T O S T A R T I S N O W !

