forked from esp8266/Arduino
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcore_esp8266_si2c.cpp
1026 lines (919 loc) · 27.2 KB
/
core_esp8266_si2c.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
si2c.c - Software I2C library for esp8266
Copyright (c) 2015 Hristo Gochkov. All rights reserved.
This file is part of the esp8266 core for Arduino environment.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified January 2017 by Bjorn Hammarberg (bjoham@esp8266.com) - i2c slave support
*/
#include "twi.h"
#include "pins_arduino.h"
#include "wiring_private.h"
#include "PolledTimeout.h"
extern "C" {
#include "twi_util.h"
#include "ets_sys.h"
};
// Inline helpers
static inline __attribute__((always_inline)) void SDA_LOW(const int twi_sda)
{
GPES = (1 << twi_sda);
}
static inline __attribute__((always_inline)) void SDA_HIGH(const int twi_sda)
{
GPEC = (1 << twi_sda);
}
static inline __attribute__((always_inline)) bool SDA_READ(const int twi_sda)
{
return (GPI & (1 << twi_sda)) != 0;
}
static inline __attribute__((always_inline)) void SCL_LOW(const int twi_scl)
{
GPES = (1 << twi_scl);
}
static inline __attribute__((always_inline)) void SCL_HIGH(const int twi_scl)
{
GPEC = (1 << twi_scl);
}
static inline __attribute__((always_inline)) bool SCL_READ(const int twi_scl)
{
return (GPI & (1 << twi_scl)) != 0;
}
// Implement as a class to reduce code size by allowing access to many global variables with a single base pointer
class Twi
{
private:
unsigned int preferred_si2c_clock = 100000;
uint32_t twi_dcount = 18;
unsigned char twi_sda = 0;
unsigned char twi_scl = 0;
unsigned char twi_addr = 0;
uint32_t twi_clockStretchLimit = 0;
// These are int-wide, even though they could all fit in a byte, to reduce code size and avoid any potential
// issues about RmW on packed bytes. The int-wide variations of asm instructions are smaller than the equivalent
// byte-wide ones, and since these emums are used everywhere, the difference adds up fast. There is only a single
// instance of the class, though, so the extra 12 bytes of RAM used here saves a lot more IRAM.
volatile enum { TWIPM_UNKNOWN = 0, TWIPM_IDLE, TWIPM_ADDRESSED, TWIPM_WAIT} twip_mode = TWIPM_IDLE;
volatile enum { TWIP_UNKNOWN = 0, TWIP_IDLE, TWIP_START, TWIP_SEND_ACK, TWIP_WAIT_ACK, TWIP_WAIT_STOP, TWIP_SLA_W, TWIP_SLA_R, TWIP_REP_START, TWIP_READ, TWIP_STOP, TWIP_REC_ACK, TWIP_READ_ACK, TWIP_RWAIT_ACK, TWIP_WRITE, TWIP_BUS_ERR } twip_state = TWIP_IDLE;
volatile int twip_status = TW_NO_INFO;
volatile int bitCount = 0;
volatile uint8_t twi_data = 0x00;
volatile int twi_ack = 0;
volatile int twi_ack_rec = 0;
volatile int twi_timeout_ms = 10;
volatile enum { TWI_READY = 0, TWI_MRX, TWI_MTX, TWI_SRX, TWI_STX } twi_state = TWI_READY;
volatile uint8_t twi_error = 0xFF;
uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];
volatile int twi_txBufferIndex = 0;
volatile int twi_txBufferLength = 0;
uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];
volatile int twi_rxBufferIndex = 0;
void (*twi_onSlaveTransmit)(void);
void (*twi_onSlaveReceive)(uint8_t*, size_t);
// ETS queue/timer interfaces
enum { EVENTTASK_QUEUE_SIZE = 1, EVENTTASK_QUEUE_PRIO = 2 };
enum { TWI_SIG_RANGE = 0x00000100, TWI_SIG_RX = 0x00000101, TWI_SIG_TX = 0x00000102 };
ETSEvent eventTaskQueue[EVENTTASK_QUEUE_SIZE];
ETSTimer timer;
// Event/IRQ callbacks, so they can't use "this" and need to be static
static void IRAM_ATTR onSclChange(void);
static void IRAM_ATTR onSdaChange(void);
static void eventTask(ETSEvent *e);
static void IRAM_ATTR onTimer(void *unused);
// Allow not linking in the slave code if there is no call to setAddress
bool _slaveEnabled = false;
// Internal use functions
void IRAM_ATTR busywait(unsigned int v);
bool write_start(void);
bool write_stop(void);
bool write_bit(bool bit);
bool read_bit(void);
bool write_byte(unsigned char byte);
unsigned char read_byte(bool nack);
void IRAM_ATTR onTwipEvent(uint8_t status);
// Handle the case where a slave needs to stretch the clock with a time-limited busy wait
inline void WAIT_CLOCK_STRETCH()
{
esp8266::polledTimeout::oneShotFastUs timeout(twi_clockStretchLimit);
esp8266::polledTimeout::periodicFastUs yieldTimeout(5000);
while (!timeout && !SCL_READ(twi_scl)) // outer loop is stretch duration up to stretch limit
{
if (yieldTimeout) // inner loop yields every 5ms
{
yield();
}
}
}
// Generate a clock "valley" (at the end of a segment, just before a repeated start)
void twi_scl_valley(void);
public:
void setClock(unsigned int freq);
void setClockStretchLimit(uint32_t limit);
void init(unsigned char sda, unsigned char scl);
void setAddress(uint8_t address);
unsigned char writeTo(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop);
unsigned char readFrom(unsigned char address, unsigned char* buf, unsigned int len, unsigned char sendStop);
uint8_t status();
uint8_t transmit(const uint8_t* data, uint8_t length);
void attachSlaveRxEvent(void (*function)(uint8_t*, size_t));
void attachSlaveTxEvent(void (*function)(void));
void IRAM_ATTR reply(uint8_t ack);
void IRAM_ATTR releaseBus(void);
void enableSlave();
};
static Twi twi;
#ifndef FCPU80
#define FCPU80 80000000L
#endif
void Twi::setClock(unsigned int freq)
{
if (freq < 1000) // minimum freq 1000Hz to minimize slave timeouts and WDT resets
{
freq = 1000;
}
preferred_si2c_clock = freq;
#if F_CPU == FCPU80
if (freq > 400000)
{
freq = 400000;
}
twi_dcount = (500000000 / freq); // half-cycle period in ns
twi_dcount = (1000 * (twi_dcount - 1120)) / 62500; // (half cycle - overhead) / busywait loop time
#else
if (freq > 800000)
{
freq = 800000;
}
twi_dcount = (500000000 / freq); // half-cycle period in ns
twi_dcount = (1000 * (twi_dcount - 560)) / 31250; // (half cycle - overhead) / busywait loop time
#endif
}
void Twi::setClockStretchLimit(uint32_t limit)
{
twi_clockStretchLimit = limit;
}
void Twi::init(unsigned char sda, unsigned char scl)
{
// set timer function
ets_timer_setfn(&timer, onTimer, NULL);
// create event task
ets_task(eventTask, EVENTTASK_QUEUE_PRIO, eventTaskQueue, EVENTTASK_QUEUE_SIZE);
twi_sda = sda;
twi_scl = scl;
pinMode(twi_sda, INPUT_PULLUP);
pinMode(twi_scl, INPUT_PULLUP);
twi_setClock(preferred_si2c_clock);
twi_setClockStretchLimit(150000L); // default value is 150 mS
}
void Twi::setAddress(uint8_t address)
{
// set twi slave address (skip over R/W bit)
twi_addr = address << 1;
}
void Twi::enableSlave()
{
if (!_slaveEnabled)
{
attachInterrupt(twi_scl, onSclChange, CHANGE);
attachInterrupt(twi_sda, onSdaChange, CHANGE);
_slaveEnabled = true;
}
}
void IRAM_ATTR Twi::busywait(unsigned int v)
{
unsigned int i;
for (i = 0; i < v; i++) // loop time is 5 machine cycles: 31.25ns @ 160MHz, 62.5ns @ 80MHz
{
__asm__ __volatile__("nop"); // minimum element to keep GCC from optimizing this function out.
}
}
bool Twi::write_start(void)
{
SCL_HIGH(twi_scl);
SDA_HIGH(twi_sda);
if (!SDA_READ(twi_sda))
{
return false;
}
busywait(twi_dcount);
SDA_LOW(twi_sda);
busywait(twi_dcount);
return true;
}
bool Twi::write_stop(void)
{
SCL_LOW(twi_scl);
SDA_LOW(twi_sda);
busywait(twi_dcount);
SCL_HIGH(twi_scl);
WAIT_CLOCK_STRETCH();
busywait(twi_dcount);
SDA_HIGH(twi_sda);
busywait(twi_dcount);
return true;
}
bool Twi::write_bit(bool bit)
{
SCL_LOW(twi_scl);
if (bit)
{
SDA_HIGH(twi_sda);
}
else
{
SDA_LOW(twi_sda);
}
busywait(twi_dcount + 1);
SCL_HIGH(twi_scl);
WAIT_CLOCK_STRETCH();
busywait(twi_dcount);
return true;
}
bool Twi::read_bit(void)
{
SCL_LOW(twi_scl);
SDA_HIGH(twi_sda);
busywait(twi_dcount + 2);
SCL_HIGH(twi_scl);
WAIT_CLOCK_STRETCH();
bool bit = SDA_READ(twi_sda);
busywait(twi_dcount);
return bit;
}
bool Twi::write_byte(unsigned char byte)
{
unsigned char bit;
for (bit = 0; bit < 8; bit++)
{
write_bit(byte & 0x80);
byte <<= 1;
}
return !read_bit();//NACK/ACK
}
unsigned char Twi::read_byte(bool nack)
{
unsigned char byte = 0;
unsigned char bit;
for (bit = 0; bit < 8; bit++)
{
byte = (byte << 1) | read_bit();
}
write_bit(nack);
return byte;
}
unsigned char Twi::writeTo(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop)
{
unsigned int i;
if (!write_start())
{
return 4; //line busy
}
if (!write_byte(((address << 1) | 0) & 0xFF))
{
if (sendStop)
{
write_stop();
}
return 2; //received NACK on transmit of address
}
for (i = 0; i < len; i++)
{
if (!write_byte(buf[i]))
{
if (sendStop)
{
write_stop();
}
return 3;//received NACK on transmit of data
}
}
if (sendStop)
{
write_stop();
}
else
{
twi_scl_valley();
// TD-er: Also busywait(twi_dcount) here?
// busywait(twi_dcount);
}
i = 0;
while (!SDA_READ(twi_sda) && (i++) < 10)
{
twi_scl_valley();
busywait(twi_dcount);
}
return 0;
}
unsigned char Twi::readFrom(unsigned char address, unsigned char* buf, unsigned int len, unsigned char sendStop)
{
unsigned int i;
if (!write_start())
{
return 4; //line busy
}
if (!write_byte(((address << 1) | 1) & 0xFF))
{
if (sendStop)
{
write_stop();
}
return 2;//received NACK on transmit of address
}
for (i = 0; i < (len - 1); i++)
{
buf[i] = read_byte(false);
}
buf[len - 1] = read_byte(true);
if (sendStop)
{
write_stop();
}
else
{
twi_scl_valley();
// TD-er: Also busywait(twi_dcount) here?
// busywait(twi_dcount);
}
i = 0;
while (!SDA_READ(twi_sda) && (i++) < 10)
{
twi_scl_valley();
busywait(twi_dcount);
}
return 0;
}
void Twi::twi_scl_valley(void)
{
SCL_LOW(twi_scl);
busywait(twi_dcount);
SCL_HIGH(twi_scl);
WAIT_CLOCK_STRETCH();
}
uint8_t Twi::status()
{
WAIT_CLOCK_STRETCH(); // wait for a slow slave to finish
if (!SCL_READ(twi_scl))
{
return I2C_SCL_HELD_LOW; // SCL held low by another device, no procedure available to recover
}
int clockCount = 20;
while (!SDA_READ(twi_sda) && clockCount-- > 0) // if SDA low, read the bits slaves have to sent to a max
{
read_bit();
if (!SCL_READ(twi_scl))
{
return I2C_SCL_HELD_LOW_AFTER_READ; // I2C bus error. SCL held low beyond slave clock stretch time
}
}
if (!SDA_READ(twi_sda))
{
return I2C_SDA_HELD_LOW; // I2C bus error. SDA line held low by slave/another_master after n bits.
}
return I2C_OK;
}
uint8_t Twi::transmit(const uint8_t* data, uint8_t length)
{
uint8_t i;
// ensure data will fit into buffer
if (length > TWI_BUFFER_LENGTH)
{
return 1;
}
// ensure we are currently a slave transmitter
if (twi_state != TWI_STX)
{
return 2;
}
// set length and copy data into tx buffer
twi_txBufferLength = length;
for (i = 0; i < length; ++i)
{
twi_txBuffer[i] = data[i];
}
return 0;
}
void Twi::attachSlaveRxEvent(void (*function)(uint8_t*, size_t))
{
twi_onSlaveReceive = function;
}
void Twi::attachSlaveTxEvent(void (*function)(void))
{
twi_onSlaveTransmit = function;
}
// DO NOT INLINE, inlining reply() in combination with compiler optimizations causes function breakup into
// parts and the IRAM_ATTR isn't propagated correctly to all parts, which of course causes crashes.
// TODO: test with gcc 9.x and if it still fails, disable optimization with -fdisable-ipa-fnsplit
void IRAM_ATTR Twi::reply(uint8_t ack)
{
// transmit master read ready signal, with or without ack
if (ack)
{
//TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);
SCL_HIGH(twi.twi_scl); // _BV(TWINT)
twi_ack = 1; // _BV(TWEA)
}
else
{
//TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);
SCL_HIGH(twi.twi_scl); // _BV(TWINT)
twi_ack = 0; // ~_BV(TWEA)
}
}
void IRAM_ATTR Twi::releaseBus(void)
{
// release bus
//TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);
SCL_HIGH(twi.twi_scl); // _BV(TWINT)
twi_ack = 1; // _BV(TWEA)
SDA_HIGH(twi.twi_sda);
// update twi state
twi_state = TWI_READY;
}
void IRAM_ATTR Twi::onTwipEvent(uint8_t status)
{
twip_status = status;
switch (status)
{
// Slave Receiver
case TW_SR_SLA_ACK: // addressed, returned ack
case TW_SR_GCALL_ACK: // addressed generally, returned ack
case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack
case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack
// enter slave receiver mode
twi_state = TWI_SRX;
// indicate that rx buffer can be overwritten and ack
twi_rxBufferIndex = 0;
reply(1);
break;
case TW_SR_DATA_ACK: // data received, returned ack
case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack
// if there is still room in the rx buffer
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH)
{
// put byte in buffer and ack
twi_rxBuffer[twi_rxBufferIndex++] = twi_data;
reply(1);
}
else
{
// otherwise nack
reply(0);
}
break;
case TW_SR_STOP: // stop or repeated start condition received
// put a null char after data if there's room
if (twi_rxBufferIndex < TWI_BUFFER_LENGTH)
{
twi_rxBuffer[twi_rxBufferIndex] = '\0';
}
// callback to user-defined callback over event task to allow for non-RAM-residing code
//twi_rxBufferLock = true; // This may be necessary
ets_post(EVENTTASK_QUEUE_PRIO, TWI_SIG_RX, twi_rxBufferIndex);
// since we submit rx buffer to "wire" library, we can reset it
twi_rxBufferIndex = 0;
break;
case TW_SR_DATA_NACK: // data received, returned nack
case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack
// nack back at master
reply(0);
break;
// Slave Transmitter
case TW_ST_SLA_ACK: // addressed, returned ack
case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack
// enter slave transmitter mode
twi_state = TWI_STX;
// ready the tx buffer index for iteration
twi_txBufferIndex = 0;
// set tx buffer length to be zero, to verify if user changes it
twi_txBufferLength = 0;
// callback to user-defined callback over event task to allow for non-RAM-residing code
// request for txBuffer to be filled and length to be set
// note: user must call twi_transmit(bytes, length) to do this
ets_post(EVENTTASK_QUEUE_PRIO, TWI_SIG_TX, 0);
break;
case TW_ST_DATA_ACK: // byte sent, ack returned
// copy data to output register
twi_data = twi_txBuffer[twi_txBufferIndex++];
bitCount = 8;
bitCount--;
if (twi_data & 0x80)
{
SDA_HIGH(twi.twi_sda);
}
else
{
SDA_LOW(twi.twi_sda);
}
twi_data <<= 1;
// if there is more to send, ack, otherwise nack
if (twi_txBufferIndex < twi_txBufferLength)
{
reply(1);
}
else
{
reply(0);
}
break;
case TW_ST_DATA_NACK: // received nack, we are done
case TW_ST_LAST_DATA: // received ack, but we are done already!
// leave slave receiver state
releaseBus();
break;
// All
case TW_NO_INFO: // no state information
break;
case TW_BUS_ERROR: // bus error, illegal stop/start
twi_error = TW_BUS_ERROR;
break;
}
}
void IRAM_ATTR Twi::onTimer(void *unused)
{
(void)unused;
twi.releaseBus();
twi.onTwipEvent(TW_BUS_ERROR);
twi.twip_mode = TWIPM_WAIT;
twi.twip_state = TWIP_BUS_ERR;
}
void Twi::eventTask(ETSEvent *e)
{
if (e == NULL)
{
return;
}
switch (e->sig)
{
case TWI_SIG_TX:
twi.twi_onSlaveTransmit();
// if they didn't change buffer & length, initialize it
if (twi.twi_txBufferLength == 0)
{
twi.twi_txBufferLength = 1;
twi.twi_txBuffer[0] = 0x00;
}
// Initiate transmission
twi.onTwipEvent(TW_ST_DATA_ACK);
break;
case TWI_SIG_RX:
// ack future responses and leave slave receiver state
twi.releaseBus();
twi.twi_onSlaveReceive(twi.twi_rxBuffer, e->par);
break;
}
}
// The state machine is converted from a 0...15 state to a 1-hot encoded state, and then
// compared to the logical-or of all states with the same branch. This removes the need
// for a large series of straight-line compares. The biggest win is when multiple states
// all have the same branch (onSdaChange), but for others there is some benefit, still.
#define S2M(x) (1<<(x))
// Shorthand for if the state is any of the or'd bitmask x
#define IFSTATE(x) if (twip_state_mask & (x))
void IRAM_ATTR Twi::onSclChange(void)
{
unsigned int sda;
unsigned int scl;
// Store bool return in int to reduce final code size.
sda = SDA_READ(twi.twi_sda);
scl = SCL_READ(twi.twi_scl);
twi.twip_status = 0xF8; // reset TWI status
int twip_state_mask = S2M(twi.twip_state);
IFSTATE(S2M(TWIP_START) | S2M(TWIP_REP_START) | S2M(TWIP_SLA_W) | S2M(TWIP_READ))
{
if (!scl)
{
// ignore
}
else
{
twi.bitCount--;
twi.twi_data <<= 1;
twi.twi_data |= sda;
if (twi.bitCount != 0)
{
// continue
}
else
{
twi.twip_state = TWIP_SEND_ACK;
}
}
}
else IFSTATE(S2M(TWIP_SEND_ACK))
{
if (scl)
{
// ignore
}
else
{
if (twi.twip_mode == TWIPM_IDLE)
{
if ((twi.twi_data & 0xFE) != twi.twi_addr)
{
// ignore
}
else
{
SDA_LOW(twi.twi_sda);
}
}
else
{
if (!twi.twi_ack)
{
// ignore
}
else
{
SDA_LOW(twi.twi_sda);
}
}
twi.twip_state = TWIP_WAIT_ACK;
}
}
else IFSTATE(S2M(TWIP_WAIT_ACK))
{
if (scl)
{
// ignore
}
else
{
if (twi.twip_mode == TWIPM_IDLE)
{
if ((twi.twi_data & 0xFE) != twi.twi_addr)
{
SDA_HIGH(twi.twi_sda);
twi.twip_state = TWIP_WAIT_STOP;
}
else
{
SCL_LOW(twi.twi_scl); // clock stretching
SDA_HIGH(twi.twi_sda);
twi.twip_mode = TWIPM_ADDRESSED;
if (!(twi.twi_data & 0x01))
{
twi.onTwipEvent(TW_SR_SLA_ACK);
twi.bitCount = 8;
twi.twip_state = TWIP_SLA_W;
}
else
{
twi.onTwipEvent(TW_ST_SLA_ACK);
twi.twip_state = TWIP_SLA_R;
}
}
}
else
{
SCL_LOW(twi.twi_scl); // clock stretching
SDA_HIGH(twi.twi_sda);
if (!twi.twi_ack)
{
twi.onTwipEvent(TW_SR_DATA_NACK);
twi.twip_mode = TWIPM_WAIT;
twi.twip_state = TWIP_WAIT_STOP;
}
else
{
twi.onTwipEvent(TW_SR_DATA_ACK);
twi.bitCount = 8;
twi.twip_state = TWIP_READ;
}
}
}
}
else IFSTATE(S2M(TWIP_SLA_R) | S2M(TWIP_WRITE))
{
if (scl)
{
// ignore
}
else
{
twi.bitCount--;
if (twi.twi_data & 0x80)
{
SDA_HIGH(twi.twi_sda);
}
else
{
SDA_LOW(twi.twi_sda);
}
twi.twi_data <<= 1;
if (twi.bitCount != 0)
{
// continue
}
else
{
twi.twip_state = TWIP_REC_ACK;
}
}
}
else IFSTATE(S2M(TWIP_REC_ACK))
{
if (scl)
{
// ignore
}
else
{
SDA_HIGH(twi.twi_sda);
twi.twip_state = TWIP_READ_ACK;
}
}
else IFSTATE(S2M(TWIP_READ_ACK))
{
if (!scl)
{
// ignore
}
else
{
twi.twi_ack_rec = !sda;
twi.twip_state = TWIP_RWAIT_ACK;
}
}
else IFSTATE(S2M(TWIP_RWAIT_ACK))
{
if (scl)
{
// ignore
}
else
{
SCL_LOW(twi.twi_scl); // clock stretching
if (twi.twi_ack && twi.twi_ack_rec)
{
twi.onTwipEvent(TW_ST_DATA_ACK);
twi.twip_state = TWIP_WRITE;
}
else
{
// we have no more data to send and/or the master doesn't want anymore
twi.onTwipEvent(twi.twi_ack_rec ? TW_ST_LAST_DATA : TW_ST_DATA_NACK);
twi.twip_mode = TWIPM_WAIT;
twi.twip_state = TWIP_WAIT_STOP;
}
}
}
}
void IRAM_ATTR Twi::onSdaChange(void)
{
unsigned int sda;
unsigned int scl;
// Store bool return in int to reduce final code size.
sda = SDA_READ(twi.twi_sda);
scl = SCL_READ(twi.twi_scl);
int twip_state_mask = S2M(twi.twip_state);
if (scl) /* !DATA */
{
IFSTATE(S2M(TWIP_IDLE))
{
if (sda)
{
// STOP - ignore
}
else
{
// START
twi.bitCount = 8;
twi.twip_state = TWIP_START;
ets_timer_arm_new(&twi.timer, twi.twi_timeout_ms, false, true); // Once, ms
}
}
else IFSTATE(S2M(TWIP_START) | S2M(TWIP_REP_START) | S2M(TWIP_SEND_ACK) | S2M(TWIP_WAIT_ACK) | S2M(TWIP_SLA_R) | S2M(TWIP_REC_ACK) | S2M(TWIP_READ_ACK) | S2M(TWIP_RWAIT_ACK) | S2M(TWIP_WRITE))
{
// START or STOP
SDA_HIGH(twi.twi_sda); // Should not be necessary
twi.onTwipEvent(TW_BUS_ERROR);
twi.twip_mode = TWIPM_WAIT;
twi.twip_state = TWIP_BUS_ERR;
}
else IFSTATE(S2M(TWIP_WAIT_STOP) | S2M(TWIP_BUS_ERR))
{
if (sda)
{
// STOP
SCL_LOW(twi.twi_scl); // generates a low SCL pulse after STOP
ets_timer_disarm(&twi.timer);
twi.twip_state = TWIP_IDLE;
twi.twip_mode = TWIPM_IDLE;
SCL_HIGH(twi.twi_scl);
}
else
{
// START
if (twi.twip_state == TWIP_BUS_ERR)
{
// ignore
}
else
{
twi.bitCount = 8;
twi.twip_state = TWIP_REP_START;
ets_timer_arm_new(&twi.timer, twi.twi_timeout_ms, false, true); // Once, ms
}
}
}
else IFSTATE(S2M(TWIP_SLA_W) | S2M(TWIP_READ))
{
// START or STOP
if (twi.bitCount != 7)
{
// inside byte transfer - error
twi.onTwipEvent(TW_BUS_ERROR);
twi.twip_mode = TWIPM_WAIT;
twi.twip_state = TWIP_BUS_ERR;
}
else
{
// during first bit in byte transfer - ok
SCL_LOW(twi.twi_scl); // clock stretching
twi.onTwipEvent(TW_SR_STOP);
if (sda)
{
// STOP
ets_timer_disarm(&twi.timer);
twi.twip_state = TWIP_IDLE;
twi.twip_mode = TWIPM_IDLE;
}
else
{
// START
twi.bitCount = 8;
ets_timer_arm_new(&twi.timer, twi.twi_timeout_ms, false, true); // Once, ms
twi.twip_state = TWIP_REP_START;
twi.twip_mode = TWIPM_IDLE;
}
}
}
}
}
// C wrappers for the object, since API is exposed only as C
extern "C" {
void twi_init(unsigned char sda, unsigned char scl)
{
return twi.init(sda, scl);
}
void twi_setAddress(uint8_t a)
{
return twi.setAddress(a);
}
void twi_setClock(unsigned int freq)
{
twi.setClock(freq);
}
void twi_setClockStretchLimit(uint32_t limit)
{
twi.setClockStretchLimit(limit);
}
uint8_t twi_writeTo(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop)
{
return twi.writeTo(address, buf, len, sendStop);
}
uint8_t twi_readFrom(unsigned char address, unsigned char * buf, unsigned int len, unsigned char sendStop)
{
return twi.readFrom(address, buf, len, sendStop);
}
uint8_t twi_status()
{
return twi.status();
}
uint8_t twi_transmit(const uint8_t * buf, uint8_t len)
{
return twi.transmit(buf, len);
}