-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
747 lines (591 loc) · 24.8 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# daniel.himmelstein@gmail.com
import itertools
import collections
import readwrite
direction_to_inverse = {'forward': 'backward',
'backward': 'forward',
'both': 'both'}
direction_to_abbrev = {'forward': '>', 'backward': '<', 'both': '-'}
class ElemMask(object):
def __init__(self):
self.masked = False
def is_masked(self):
return self.masked
def mask(self):
self.masked = True
def unmask(self):
self.masked = False
class IterMask(object):
def is_masked(self):
return any(elem.is_masked() for elem in self.mask_elem_iter())
class BaseGraph(object):
def __init__(self):
self.node_dict = dict()
self.edge_dict = dict()
self.path_dict = dict()
def get_node(self, kind):
return self.node_dict[kind]
def get_edge(self, edge_tuple):
return self.edge_dict[edge_tuple]
def get_nodes(self):
return self.node_dict.itervalues()
def get_edges(self, exclude_inverts=True):
for edge in self.edge_dict.itervalues():
if exclude_inverts and edge.inverted:
continue
yield edge
class BaseNode(ElemMask):
def __init__(self, id_):
ElemMask.__init__(self)
self.id_ = id_
def __hash__(self):
return hash(self.id_)
def __lt__(self, other):
return self.id_ < other.id_
def __eq__(self, other):
return self.id_ == other.id_
def __repr__(self):
return self.id_
class BaseEdge(ElemMask):
def __init__(self, source, target):
ElemMask.__init__(self)
self.source = source
self.target = target
def __hash__(self):
try:
return self.hash_
except AttributeError:
return hash(self.get_id())
def __repr__(self):
source, target, kind, direction = self.get_id()
dir_abbrev = direction_to_abbrev[direction]
return '{0} {3} {2} {3} {1}'.format(source, target, kind, dir_abbrev)
class BasePath(IterMask):
def __init__(self, edges):
assert isinstance(edges, tuple)
self.edges = edges
def source(self):
return self[0].source
def target(self):
return self[-1].target
def get_nodes(self):
nodes = tuple(edge.source for edge in self)
nodes = nodes + (self.target(), )
return nodes
def inverse_edges(self):
return tuple(reversed(list(edge.inverse for edge in self)))
def mask_elem_iter(self):
for edge in self:
yield edge
yield edge.source
yield self.target()
def max_overlap(self, others):
for other in others:
len_other = len(other)
if len_other > len(self):
continue
if self[:len_other] == other:
return other
return None
def __iter__(self):
return iter(self.edges)
def __getitem__(self, key):
return self.edges[key]
def __len__(self):
return len(self.edges)
def __hash__(self):
return hash(self.edges)
def __eq__(self, other):
return self.edges == other.edges
class MetaGraph(BaseGraph):
def __init__(self):
""" """
BaseGraph.__init__(self)
@staticmethod
def from_edge_tuples(metaedge_tuples):
metagraph = MetaGraph()
node_kinds = set()
for source_kind, target_kind, kind, direction in metaedge_tuples:
node_kinds.add(source_kind)
node_kinds.add(target_kind)
for kind in node_kinds:
metagraph.add_node(kind)
for edge_tuple in metaedge_tuples:
metagraph.add_edge(edge_tuple)
metagraph.create_abbreviations()
return metagraph
@staticmethod
def get_duplicates(iterable):
"""Return a set of the elements which appear multiple times in iterable."""
seen, duplicates = set(), set()
for elem in iterable:
if elem in seen:
duplicates.add(elem)
else:
seen.add(elem)
return duplicates
@staticmethod
def find_abbrevs(kinds):
"""For a list of strings (kinds), find the shortest unique abbreviation."""
kind_to_abbrev = {kind: kind[0] for kind in kinds}
duplicates = MetaGraph.get_duplicates(kind_to_abbrev.values())
while duplicates:
for kind, abbrev in kind_to_abbrev.items():
if abbrev in duplicates:
abbrev += kind[len(abbrev)]
kind_to_abbrev[kind] = abbrev
duplicates = MetaGraph.get_duplicates(kind_to_abbrev.values())
return kind_to_abbrev
def create_abbreviations(self):
"""Creates abbreviations for node and edge kinds."""
kind_to_abbrev = MetaGraph.find_abbrevs(self.node_dict.keys())
kind_to_abbrev = {kind: abbrev.upper()
for kind, abbrev in kind_to_abbrev.items()}
edge_set_to_keys = dict()
for edge in self.edge_dict.keys():
key = frozenset(map(str.lower, edge[:2]))
value = edge[2]
edge_set_to_keys.setdefault(key, list()).append(value)
for edge_set, keys in edge_set_to_keys.items():
key_to_abbrev = MetaGraph.find_abbrevs(keys)
for key, abbrev in key_to_abbrev.items():
previous_abbrev = kind_to_abbrev.get(key)
if previous_abbrev and len(abbrev) <= len(previous_abbrev):
continue
kind_to_abbrev[key] = abbrev
self.set_abbreviations(kind_to_abbrev)
self.kind_to_abbrev = kind_to_abbrev
return kind_to_abbrev
def set_abbreviations(self, kind_to_abbrev):
for kind, node in self.node_dict.iteritems():
node.abbrev = kind_to_abbrev[kind]
for metaedge in self.edge_dict.itervalues():
metaedge.kind_abbrev = kind_to_abbrev[metaedge.kind]
def add_node(self, kind):
metanode = MetaNode(kind)
self.node_dict[kind] = metanode
def add_edge(self, edge_id):
"""source_kind, target_kind, kind, direction"""
assert edge_id not in self.edge_dict
source_kind, target_kind, kind, direction = edge_id
source = self.get_node(source_kind)
target = self.get_node(target_kind)
metaedge = MetaEdge(source, target, kind, direction)
self.edge_dict[edge_id] = metaedge
source.edges.add(metaedge)
metaedge.inverted = False
if source == target and direction == 'both':
metaedge.inverse = metaedge
else:
inverse_direction = direction_to_inverse[direction]
inverse_id = target_kind, source_kind, kind, inverse_direction
assert inverse_id not in self.edge_dict
inverse = MetaEdge(target, source, kind, inverse_direction)
self.edge_dict[inverse_id] = inverse
target.edges.add(inverse)
metaedge.inverse = inverse
inverse.inverse = metaedge
inverse.inverted = True
def extract_metapaths(self, source_kind, target_kind, max_length):
source = self.node_dict[source_kind]
target = self.node_dict[target_kind]
metapaths = [self.get_metapath((edge, )) for edge in source.edges]
previous_metapaths = list(metapaths)
for depth in range(1, max_length):
current_metapaths = list()
for metapath in previous_metapaths:
for add_edge in metapath.target().edges:
new_metapath = self.get_metapath(metapath.edges + (add_edge, ))
current_metapaths.append(new_metapath)
metapaths.extend(current_metapaths)
previous_metapaths = current_metapaths
metapaths = [metapath for metapath in metapaths if metapath.target() == target]
return metapaths
def get_metapath(self, edges):
""" """
try:
return self.path_dict[edges]
except KeyError:
assert isinstance(edges, tuple)
if len(edges) == 0:
return None
metapath = MetaPath(edges)
self.path_dict[edges] = metapath
inverse_edges = metapath.inverse_edges()
inverse = MetaPath(inverse_edges)
self.path_dict[inverse_edges] = inverse
metapath.inverse = inverse
inverse.inverse = metapath
sub_edges = edges[1:]
if not sub_edges:
metapath.sub = None
inverse.sub = None
else:
metapath.sub = self.get_metapath(sub_edges)
inverse.sub = self.get_metapath(inverse_edges[1:])
return metapath
class MetaNode(BaseNode):
def __init__(self, id_):
""" """
BaseNode.__init__(self, id_)
self.edges = set()
class MetaEdge(BaseEdge):
def __init__(self, source, target, kind, direction):
"""source and target are MetaNodes."""
BaseEdge.__init__(self, source, target)
self.kind = kind
self.direction = direction
self.hash_ = hash(self.get_id())
def get_id(self):
""" """
return self.source.id_, self.target.id_, self.kind, self.direction
def filesystem_str(self):
return '{0}{2}{1}-{3}'.format(self.source.abbrev, self.target.abbrev,
self.kind_abbrev, self.direction)
class MetaPath(BasePath):
def __init__(self, edges):
"""metaedges is a tuple of edges"""
assert all(isinstance(edge, MetaEdge) for edge in edges)
BasePath.__init__(self, edges)
def __repr__(self):
s = str()
for edge in self:
source_abbrev = edge.source.abbrev
dir_abbrev = direction_to_abbrev[edge.direction]
kind_abbrev = edge.kind_abbrev
s += '{0}{1}{2}{1}'.format(source_abbrev, dir_abbrev, kind_abbrev)
s += self.target().abbrev
return s
class Tree(object):
__slots__ = ('parent', 'edge') #, 'is_root', 'path_to_root')
def __init__(self, parent, edge):
self.parent = parent
self.edge = edge
def path_to_root(self):
path_edges = [self.edge]
parent = self.parent
while parent is not None:
path_edges.append(parent.edge)
parent = parent.parent
path_edges = tuple(reversed(path_edges))
path = Path(path_edges)
return path
def nodes_to_root(self):
nodes = [self.edge.target, self.edge.source]
parent = self.parent
while parent is not None:
nodes.append(parent.edge.source)
parent = parent.parent
return nodes
class Graph(BaseGraph):
def __init__(self, metagraph, data=dict()):
""" """
BaseGraph.__init__(self)
self.metagraph = metagraph
self.data = data
def add_node(self, id_, kind, data=dict()):
""" """
metanode = self.metagraph.node_dict[kind]
node = Node(id_, metanode, data)
self.node_dict[id_] = node
return node
def add_edge(self, source_id, target_id, kind, direction, data=dict()):
""" """
source = self.node_dict[source_id]
target = self.node_dict[target_id]
metaedge_id = source.metanode.id_, target.metanode.id_, kind, direction
metaedge = self.metagraph.edge_dict[metaedge_id]
edge = Edge(source, target, metaedge, data)
self.edge_dict[edge.get_id()] = edge
edge.inverted = False
inverse = Edge(target, source, metaedge.inverse, data)
inverse_id = inverse.get_id()
self.edge_dict[inverse_id] = inverse
inverse.inverted = True
edge.inverse = inverse
inverse.inverse = edge
return edge, inverse
def paths_tree(self, source, metapath,
duplicates=False, masked=True,
exclude_nodes=set(), exclude_edges=set()):
"""
Return a list of Paths starting with source and following metapath.
Setting duplicates False disallows paths with repeated nodes.
Setting masked False disallows paths which traverse a masked node or edge.
exclude_nodes and exclude_edges allow specification of additional nodes
and edges beyond (or independent of) masked nodes and edges.
"""
if not isinstance(source, Node):
source = self.node_dict[source]
if masked and source.masked:
return None
if source in exclude_nodes:
return None
leaves = list()
for edge in source.edges[metapath[0]]:
edge_target = edge.target
if not duplicates and source == edge_target:
continue
if edge_target in exclude_nodes or edge in exclude_edges:
continue
if not masked and (edge_target.masked or edge.masked):
continue
tree = Tree(parent=None, edge=edge)
leaves.append(tree)
for metaedge in metapath[1:]:
new_leaves = list()
for parent in leaves:
edges = parent.edge.target.edges[metaedge]
path_members = set(parent.nodes_to_root())
for edge in edges:
edge_target = edge.target
if not duplicates and edge_target in path_members:
continue
if edge_target in exclude_nodes or edge in exclude_edges:
continue
if not masked and (edge_target.masked or edge.masked):
continue
tree = Tree(parent=parent, edge=edge)
new_leaves.append(tree)
leaves = new_leaves
if not leaves:
break
return leaves
def paths_between_tree(self, source, target, metapath,
duplicates=False, masked=True,
exclude_nodes=set(), exclude_edges=set()):
"""
Retreive the paths starting with the node source and ending on the
node target. Future implementations should split the metapath, computing
paths_from the source and target and look for the intersection at the
intermediary Node position.
"""
split_threshold = 2
if len(metapath) <= split_threshold:
leaves = self.paths_tree(source, metapath, duplicates, masked, exclude_nodes, exclude_edges)
leaves = filter(lambda leaf: leaf.edge.target == target, leaves)
paths = [leaf.path_to_root() for leaf in leaves]
return paths
split_index = len(metapath) / 2
get_metapath = self.metagraph.get_metapath
metapath_head = get_metapath(metapath[:split_index])
metapath_tail = get_metapath(tuple(mp.inverse for mp in reversed(metapath[split_index:])))
head_leaves = self.paths_tree(source, metapath_head, duplicates, masked, exclude_nodes, exclude_edges)
tail_leaves = self.paths_tree(target, metapath_tail, duplicates, masked, exclude_nodes, exclude_edges)
head_leaf_targets = {head_leaf.edge.target for head_leaf in head_leaves}
tail_leaf_targets = {tail_leaf.edge.target for tail_leaf in tail_leaves}
intersecting_leaf_targets = head_leaf_targets & tail_leaf_targets
head_leaves = filter(lambda leaf: leaf.edge.target in intersecting_leaf_targets, head_leaves)
tail_leaves = filter(lambda leaf: leaf.edge.target in intersecting_leaf_targets, tail_leaves)
head_dict = dict()
for leaf in head_leaves:
path = leaf.path_to_root()
head_dict.setdefault(leaf.edge.target, list()).append(path)
tail_dict = dict()
for leaf in tail_leaves:
path = leaf.path_to_root()
tail_dict.setdefault(leaf.edge.target, list()).append(path)
paths = list()
for node in intersecting_leaf_targets:
heads = head_dict[node]
tails = tail_dict[node]
for head, tail in itertools.product(heads, tails):
path = Path(head.edges + tail.edges)
if not duplicates:
nodes = path.get_nodes()
if len(set(nodes)) < len(nodes):
continue
paths.append(path)
return paths
def paths_from(self, source, metapath,
duplicates=False, masked=True,
exclude_nodes=set(), exclude_edges=set()):
"""
Return a list of Paths starting with source and following metapath.
Setting duplicates False disallows paths with repeated nodes.
Setting masked False disallows paths which traverse a masked node or edge.
exclude_nodes and exclude_edges allow specification of additional nodes
and edges beyond (or independent of) masked nodes and edges.
"""
if not isinstance(source, Node):
source = self.node_dict[source]
if masked and source.masked:
return None
if source in exclude_nodes:
return None
paths = list()
for edge in source.edges[metapath[0]]:
edge_target = edge.target
if edge_target in exclude_nodes:
continue
if edge in exclude_edges:
continue
if not masked and (edge_target.masked or edge.masked):
continue
if not duplicates and edge_target == source:
continue
path = Path((edge, ))
paths.append(path)
for i in range(1, len(metapath)):
current_paths = list()
metaedge = metapath[i]
for path in paths:
nodes = path.get_nodes()
edges = path.target().edges[metaedge]
for edge in edges:
edge_target = edge.target
if edge_target in exclude_nodes:
continue
if edge in exclude_edges:
continue
if not masked and (edge_target.masked or edge.masked):
continue
if not duplicates and edge_target in nodes:
continue
newpath = Path(path.edges + (edge, ))
current_paths.append(newpath)
paths = current_paths
return paths
def paths_between(self, source, target, metapath,
duplicates=False, masked=True,
exclude_nodes=set(), exclude_edges=set()):
"""
Retreive the paths starting with the node source and ending on the
node target. Future implementations should split the metapath, computing
paths_from the source and target and look for the intersection at the
intermediary Node position.
"""
if len(metapath) <= 1:
paths = self.paths_from(source, metapath, duplicates, masked,
exclude_nodes, exclude_edges)
paths = [path for path in paths if path.target() == target]
return paths
split_index = len(metapath) / 2
get_metapath = self.metagraph.get_metapath
metapath_head = get_metapath(metapath[:split_index])
metapath_tail = get_metapath(tuple(mp.inverse for mp in reversed(metapath[split_index:])))
paths_head = self.paths_from(source, metapath_head, duplicates, masked, exclude_nodes, exclude_edges)
paths_tail = self.paths_from(target, metapath_tail, duplicates, masked, exclude_nodes, exclude_edges)
node_intersect = (set(path.target() for path in paths_head) &
set(path.target() for path in paths_tail))
head_dict = dict()
for path in paths_head:
path_target = path.target()
if path_target in node_intersect:
head_dict.setdefault(path_target, list()).append(path)
tail_dict = dict()
for path in paths_tail:
path_target = path.target()
if path_target in node_intersect:
path = Path(path.inverse_edges())
tail_dict.setdefault(path_target, list()).append(path)
paths = list()
for node in node_intersect:
heads = head_dict[node]
tails = tail_dict[node]
for head, tail in itertools.product(heads, tails):
path = Path(head.edges + tail.edges)
if not duplicates:
nodes = path.get_nodes()
if len(set(nodes)) < len(nodes):
continue
paths.append(path)
return paths
def unmask(self):
"""Unmask all nodes and edges contained within the graph"""
for dictionary in self.node_dict, self.edge_dict:
for value in dictionary.itervalues():
value.masked = False
def get_metanode_to_nodes(self):
metanode_to_nodes = dict()
for node in self.get_nodes():
metanode = node.metanode
metanode_to_nodes.setdefault(metanode, list()).append(node)
return metanode_to_nodes
def get_metaedge_to_edges(self, exclude_inverts=False):
metaedge_to_edges = dict()
for edge in self.get_edges(exclude_inverts):
metaedge = edge.metaedge
metaedge_to_edges.setdefault(metaedge, list()).append(edge)
return metaedge_to_edges
class Node(BaseNode):
def __init__(self, id_, metanode, data):
""" """
BaseNode.__init__(self, id_)
self.metanode = metanode
self.data = data
self.edges = {metaedge: set() for metaedge in metanode.edges}
def get_edges(self, metaedge, exclude_masked=True):
"""
Returns the set of edges incident to self of the specified metaedge.
"""
if exclude_masked:
edges = set()
for edge in self.edges[metaedge]:
if edge.masked or edge.target.masked:
continue
edges.add(edge)
else:
edges = self.edges[metaedge]
return edges
class Edge(BaseEdge):
def __init__(self, source, target, metaedge, data):
"""source and target are Node objects. metaedge is the MetaEdge object
representing the edge
"""
BaseEdge.__init__(self, source, target)
self.metaedge = metaedge
self.data = data
self.source.edges[metaedge].add(self)
def get_id(self):
return self.source.id_, self.target.id_, self.metaedge.kind, self.metaedge.direction
class Path(BasePath):
def __init__(self, edges):
"""potentially metapath should be an input although it can be calculated"""
BasePath.__init__(self, edges)
def __repr__(self):
s = ''
for edge in self:
dir_abbrev = direction_to_abbrev[edge.metaedge.direction]
s += '{0} {1} {2} {1} '.format(edge.source, dir_abbrev, edge.metaedge.kind)
s = '{}{}'.format(s, self.target())
return s
if __name__ == '__main__':
""" """
metaedges = [('gene', 'disease', 'association', 'both'),
('gene', 'gene', 'function', 'both'),
('gene', 'tissue', 'expression', 'both'),
('disease', 'tissue', 'pathology', 'both'),
('gene', 'gene', 'transcription', 'forward')]
metagraph = MetaGraph.from_edge_tuples(metaedges)
graph = Graph(metagraph)
graph.add_node('IL17', 'gene')
graph.add_node('BRCA1', 'gene')
graph.add_node('ANAL1', 'gene')
graph.add_node('MS', 'disease')
graph.add_node('brain', 'tissue')
graph.add_edge('MS', 'IL17', 'association', 'both')
graph.add_edge('MS', 'brain', 'pathology', 'both')
graph.add_edge('IL17', 'brain', 'expression', 'both')
graph.add_edge('IL17', 'BRCA1', 'transcription', 'backward')
#gml_path = '/home/dhimmels/Desktop/test-graph.gml'
#readwrite.write_gml(graph, gml_path)
json_path = '/home/dhimmels/Desktop/test-graph.json'
readwrite.graph.write_json(graph, json_path)
#graph = readwrite.read_json(json_path)
metapaths = metagraph.extract_metapaths('gene', 'disease', 2)
print metapaths
"""
metapaths = metagraph.extract_metapaths('gene', 'disease', 2)
print graph.paths_from('BRCA1', metapaths[3])
"""
"""
for node in graph.node_dict.values():
print node.edges
metapaths = metagraph.extract_metapaths('gene', 'disease', 2)
"""
#print graph.node_dict.values()[0].edges
#print graph.edge_dict
#print nodes and edges
#
#print metapaths