-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathanalyze.py
45 lines (36 loc) · 1.41 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import cPickle as pickle
actions = ['put_unsorted', 'put_sorted', 'get_sorted', 'update_sorted', 'update_unsorted', 'get_unsorted', 'throughput_unsorted_303030', 'throughput_sorted_303030']
data_sizes = ['1000', '10000', '100000']
buffer_sizes = ['100', '1000', '10000', '100000']
stats = {}
ids = []
#########
## Specify the index of the action that you want to test
#########
# a = -1
means = np.zeros([len(data_sizes), len(buffer_sizes)])
stds = np.zeros([len(data_sizes), len(buffer_sizes)])
for d in range(len(data_sizes)):
bs_means =[]
bs_stds =[]
for b in range(len(buffer_sizes)):
id = '%s_%s_%s'%(actions[a], data_sizes[d], buffer_sizes[b])
ids.append(id)
f = open('data/%s/%s.txt'%(actions[a], id), 'r')
data = f.readline().split(',')[:-1]
for i in range(len(data)):
data[i] = float(data[i])
data = np.array(data)
mean = np.average(data)
std = np.std(data)
means[d,b] = mean
stds[d,b] = std
stats[id] = {'mean': mean, 'std': std, 'data': data}
print id, mean
pickle.dump(stats, open('data/processed/%s_stats.p'%(actions[a]),'w'))
pickle.dump(means, open('data/processed/%s_means.p'%(actions[a]),'w'))
pickle.dump(stds, open('data/processed/%s_stds.p'%(actions[a]),'w'))
print stats.keys()
print means
print stds