forked from deepspeedai/DeepSpeedExamples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpostprocess_results.py
200 lines (158 loc) · 5.83 KB
/
postprocess_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import argparse
import json
import re
import os
from tabulate import tabulate
from dataclasses import dataclass
from functools import reduce
from pathlib import Path
from statistics import mean
from typing import List
from collections import defaultdict
import numpy as np
from transformers import AutoTokenizer
tokenizer = None
@dataclass
class ResponseDetails:
generated_tokens: List[str]
prompt: str
start_time: float
end_time: float
model_time: float
token_gen_time: List[float]
@dataclass
class ProfilingSummary:
throughput: float
latency: float
token_gen_latency: float
first_token_latency: float
tokens_per_sec: float
def parse_args():
parser = argparse.ArgumentParser(description="Postprocess results")
parser.add_argument("-i", "--input_path", type=Path, default="results.json")
args = parser.parse_args()
return args
def get_tokenizer(model=None):
global tokenizer
if tokenizer is None:
if model==None:
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
else:
tokenizer = AutoTokenizer.from_pretrained(model)
return tokenizer
def read_json(file_path):
with open(file_path, "r") as f:
data = json.load(f)
args = data["args"]
response_details = []
for response in data["response_details"]:
response_details.append(ResponseDetails(**response))
return args, response_details
def get_summary(args, response_details):
num_clients = args["num_clients"]
# Calculate latency and throughput using P95 latency
latency = mean([r.end_time - r.start_time for r in response_details])
throughput = num_clients / latency
tokens_per_sec = mean(
[
(len(get_tokenizer(args["model"]).tokenize(r.prompt)) +
len(get_tokenizer(args["model"]).tokenize(r.generated_tokens)) if type(r.generated_tokens) == str
else len(r.generated_tokens))
/ (r.end_time - r.start_time)
for r in response_details
]
)
# For non-streaming results, we don't have any token_gen_time information
first_token_latency = 0.0
token_gen_latency = 0.0
if response_details[0].token_gen_time:
first_token_latency = mean([r.token_gen_time[0] for r in response_details])
token_gen_latency_flat = reduce(
list.__add__,
[
r.token_gen_time[1:-1]
for r in response_details
if len(r.token_gen_time) > 2
],
)
token_gen_latency = mean([t for t in token_gen_latency_flat])
return ProfilingSummary(
throughput, latency, token_gen_latency, first_token_latency, tokens_per_sec
)
def get_token_latency(
response_details, percentile=None, variance=False, cumulative=False
):
req_latencies = [r.token_gen_time for r in response_details]
if cumulative:
req_latencies = [
np.cumsum(np.array(r.token_gen_time)).tolist() for r in response_details
]
max_gen_length = max([len(r.generated_tokens) for r in response_details])
latency = []
for i in range(max_gen_length):
if variance:
token_latency_step = np.var(
[latency[i] for latency in req_latencies if len(latency) > i]
)
if percentile is None:
token_latency_step = [
latency[i] for latency in req_latencies if len(latency) > i
]
else:
token_latency_step = np.percentile(
[latency[i] for latency in req_latencies if len(latency) > i],
percentile,
)
latency.append(token_latency_step)
return latency
def get_token_acc_latency(response_details, percentile=99):
return get_token_latency(response_details, percentile, cumulative=True)
if __name__ == "__main__":
args = parse_args()
prof_args, response_details = read_json(args.input_path)
ps = get_summary(prof_args, response_details)
print(
f"Deployment: {prof_args['deployment_name']} Clients: {prof_args['num_clients']}, "
+ f"Query throughput: {ps.throughput:.3f} queries/s, "
+ f"Token throughput (total): {ps.tokens_per_sec:.3f} tokens/s, "
+ f"Query latency: {ps.latency:.3f} s, "
+ f"Token generation latency: {ps.token_gen_latency:.3f} s/token, "
+ f"First token received: {ps.first_token_latency:.3f} s"
)
def get_result_sets(args: argparse.Namespace) -> set():
result_params = None
result_re = re.compile(
r"(.+)-tp(\d+)-bs(\d+)-replicas(\d+)-prompt(\d+)-gen(\d+)-clients.*.json"
)
data_sets = defaultdict(set)
if hasattr(args, "data_dirs"):
data_set_dirs = args.data_dirs
elif hasattr(args, "backend"):
data_set_dirs = args.backend
# Generate data sets
for data in data_set_dirs:
if hasattr(args, "log_dir"):
os_path = os.path.join(args.log_dir, data)
else:
os_path = os.path.join(data)
for f in os.listdir(os_path):
match = result_re.match(f)
if match:
data_sets[data].add(match.groups())
# Intersection between all sets
for data_set in data_sets.values():
if result_params == None:
result_params = data_set
else:
result_params = result_params.intersection(data_set)
# Warning messages about skipped sets
for key, data_set in data_sets.items():
difference = data_set.difference(result_params)
if difference:
print(f"WARNING: data {key} has result combinations that are not present in all data sets:")
print(tabulate(difference, headers=["model", "tp_size", "bs", "replicas", "prompt", "gen"]))
print("")
return result_params