You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(janus_pro) zhoujingwei@MrJoe-Macbook-pro2022 Janus % python demo/app_januspro.py
/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/transformers/models/auto/image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use slow_image_processor_class, or fast_image_processor_class instead
warnings.warn(
Using a slow image processor as use_fast is unset and a slow processor was saved with this model. use_fast=True will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with use_fast=False.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the legacy (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set legacy=False. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in huggingface/transformers#24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: sft_format, ignore_id, image_tag, add_special_token, mask_prompt, num_image_tokens.
Running on local URL: http://127.0.0.1:7860
Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.
Traceback (most recent call last):
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/queueing.py", line 536, in process_events
response = await route_utils.call_process_api(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/route_utils.py", line 322, in call_process_api
output = await app.get_blocks().process_api(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/blocks.py", line 1935, in process_api
result = await self.call_function(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/blocks.py", line 1520, in call_function
prediction = await anyio.to_thread.run_sync( # type: ignore
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 2461, in run_sync_in_worker_thread
return await future
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 962, in run
result = context.run(func, *args)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/utils.py", line 826, in wrapper
response = f(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/demo/app_januspro.py", line 160, in generate_image
output, patches = generate(input_ids,
File "/Users/zhoujingwei/Desktop/worke/project/Janus/demo/app_januspro.py", line 118, in generate
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 507, in decode_code
dec = self.decode(quant_b)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 502, in decode
dec = self.decoder(quant)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 208, in forward
h = block.upsample(h)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 426, in forward
x = self.conv(x)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 554, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 549, in _conv_forward
return F.conv2d(
RuntimeError: Input type (c10::BFloat16) and bias type (c10::Half) should be the same
The text was updated successfully, but these errors were encountered:
Traceback (most recent call last):
File "/Users/zhoujingwei/Desktop/worke/project/Janus/demo/app_januspro.py", line 4, in
from janus.models import MultiModalityCausalLM, VLChatProcessor
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/init.py", line 20, in
from .image_processing_vlm import VLMImageProcessor
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/image_processing_vlm.py", line 24, in
import torchvision
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torchvision/init.py", line 10, in
from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils # usort:skip
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torchvision/_meta_registrations.py", line 163, in
@torch.library.register_fake("torchvision::nms")
AttributeError: module 'torch.library' has no attribute 'register_fake'
(janus_pro) zhoujingwei@MrJoe-Macbook-pro2022 Janus % python demo/app_januspro.py
/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/transformers/models/auto/image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use
slow_image_processor_class
, orfast_image_processor_class
insteadwarnings.warn(
Using a slow image processor as
use_fast
is unset and a slow processor was saved with this model.use_fast=True
will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor withuse_fast=False
.You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the
legacy
(previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, setlegacy=False
. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in huggingface/transformers#24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.Some kwargs in processor config are unused and will not have any effect: sft_format, ignore_id, image_tag, add_special_token, mask_prompt, num_image_tokens.
Running on local URL: http://127.0.0.1:7860
Could not create share link. Please check your internet connection or our status page: https://status.gradio.app.
Traceback (most recent call last):
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/queueing.py", line 536, in process_events
response = await route_utils.call_process_api(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/route_utils.py", line 322, in call_process_api
output = await app.get_blocks().process_api(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/blocks.py", line 1935, in process_api
result = await self.call_function(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/blocks.py", line 1520, in call_function
prediction = await anyio.to_thread.run_sync( # type: ignore
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 2461, in run_sync_in_worker_thread
return await future
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/anyio/_backends/_asyncio.py", line 962, in run
result = context.run(func, *args)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/gradio/utils.py", line 826, in wrapper
response = f(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/demo/app_januspro.py", line 160, in generate_image
output, patches = generate(input_ids,
File "/Users/zhoujingwei/Desktop/worke/project/Janus/demo/app_januspro.py", line 118, in generate
patches = vl_gpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int),
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 507, in decode_code
dec = self.decode(quant_b)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 502, in decode
dec = self.decoder(quant)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 208, in forward
h = block.upsample(h)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/Desktop/worke/project/Janus/janus/models/vq_model.py", line 426, in forward
x = self.conv(x)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1750, in _call_impl
return forward_call(*args, **kwargs)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 554, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/Users/zhoujingwei/anaconda3/envs/janus_pro/lib/python3.9/site-packages/torch/nn/modules/conv.py", line 549, in _conv_forward
return F.conv2d(
RuntimeError: Input type (c10::BFloat16) and bias type (c10::Half) should be the same
The text was updated successfully, but these errors were encountered: