forked from pytorch/vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_image.py
714 lines (568 loc) · 25.8 KB
/
test_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import glob
import io
import os
import sys
from pathlib import Path
import numpy as np
import pytest
import torch
import torchvision.transforms.functional as F
from common_utils import assert_equal, needs_cuda
from PIL import __version__ as PILLOW_VERSION, Image, ImageOps
from torchvision.io.image import (
_read_png_16,
decode_image,
decode_jpeg,
decode_png,
encode_jpeg,
encode_png,
ImageReadMode,
read_file,
read_image,
write_file,
write_jpeg,
write_png,
)
IMAGE_ROOT = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
FAKEDATA_DIR = os.path.join(IMAGE_ROOT, "fakedata")
IMAGE_DIR = os.path.join(FAKEDATA_DIR, "imagefolder")
DAMAGED_JPEG = os.path.join(IMAGE_ROOT, "damaged_jpeg")
DAMAGED_PNG = os.path.join(IMAGE_ROOT, "damaged_png")
ENCODE_JPEG = os.path.join(IMAGE_ROOT, "encode_jpeg")
INTERLACED_PNG = os.path.join(IMAGE_ROOT, "interlaced_png")
TOOSMALL_PNG = os.path.join(IMAGE_ROOT, "toosmall_png")
IS_WINDOWS = sys.platform in ("win32", "cygwin")
IS_MACOS = sys.platform == "darwin"
PILLOW_VERSION = tuple(int(x) for x in PILLOW_VERSION.split("."))
def _get_safe_image_name(name):
# Used when we need to change the pytest "id" for an "image path" parameter.
# If we don't, the test id (i.e. its name) will contain the whole path to the image, which is machine-specific,
# and this creates issues when the test is running in a different machine than where it was collected
# (typically, in fb internal infra)
return name.split(os.path.sep)[-1]
def get_images(directory, img_ext):
assert os.path.isdir(directory)
image_paths = glob.glob(directory + f"/**/*{img_ext}", recursive=True)
for path in image_paths:
if path.split(os.sep)[-2] not in ["damaged_jpeg", "jpeg_write"]:
yield path
def pil_read_image(img_path):
with Image.open(img_path) as img:
return torch.from_numpy(np.array(img))
def normalize_dimensions(img_pil):
if len(img_pil.shape) == 3:
img_pil = img_pil.permute(2, 0, 1)
else:
img_pil = img_pil.unsqueeze(0)
return img_pil
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("RGB", ImageReadMode.RGB),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_jpeg, decode_image))
def test_decode_jpeg(img_path, pil_mode, mode, scripted, decode_fun):
with Image.open(img_path) as img:
is_cmyk = img.mode == "CMYK"
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
if is_cmyk and mode == ImageReadMode.UNCHANGED:
# flip the colors to match libjpeg
img_pil = 255 - img_pil
img_pil = normalize_dimensions(img_pil)
data = read_file(img_path)
if scripted:
decode_fun = torch.jit.script(decode_fun)
img_ljpeg = decode_fun(data, mode=mode)
# Permit a small variation on pixel values to account for implementation
# differences between Pillow and LibJPEG.
abs_mean_diff = (img_ljpeg.type(torch.float32) - img_pil).abs().mean().item()
assert abs_mean_diff < 2
@pytest.mark.parametrize("codec", ["png", "jpeg"])
@pytest.mark.parametrize("orientation", [1, 2, 3, 4, 5, 6, 7, 8, 0])
def test_decode_with_exif_orientation(tmpdir, codec, orientation):
fp = os.path.join(tmpdir, f"exif_oriented_{orientation}.{codec}")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
exif = im.getexif()
exif[0x0112] = orientation # set exif orientation
im.save(fp, codec.upper(), exif=exif.tobytes())
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
@pytest.mark.parametrize("size", [65533, 1, 7, 10, 23, 33])
def test_invalid_exif(tmpdir, size):
# Inspired from a PIL test:
# https://github.com/python-pillow/Pillow/blob/8f63748e50378424628155994efd7e0739a4d1d1/Tests/test_file_jpeg.py#L299
fp = os.path.join(tmpdir, "invalid_exif.jpg")
t = torch.randint(0, 256, size=(3, 256, 257), dtype=torch.uint8)
im = F.to_pil_image(t)
im.save(fp, "JPEG", exif=b"1" * size)
data = read_file(fp)
output = decode_image(data, apply_exif_orientation=True)
pimg = Image.open(fp)
pimg = ImageOps.exif_transpose(pimg)
expected = F.pil_to_tensor(pimg)
torch.testing.assert_close(expected, output)
def test_decode_jpeg_errors():
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(torch.empty((100, 1), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(torch.empty((100,), dtype=torch.float16))
with pytest.raises(RuntimeError, match="Not a JPEG file"):
decode_jpeg(torch.empty((100), dtype=torch.uint8))
def test_decode_bad_huffman_images():
# sanity check: make sure we can decode the bad Huffman encoding
bad_huff = read_file(os.path.join(DAMAGED_JPEG, "bad_huffman.jpg"))
decode_jpeg(bad_huff)
@pytest.mark.parametrize(
"img_path",
[
pytest.param(truncated_image, id=_get_safe_image_name(truncated_image))
for truncated_image in glob.glob(os.path.join(DAMAGED_JPEG, "corrupt*.jpg"))
],
)
def test_damaged_corrupt_images(img_path):
# Truncated images should raise an exception
data = read_file(img_path)
if "corrupt34" in img_path:
match_message = "Image is incomplete or truncated"
else:
match_message = "Unsupported marker type"
with pytest.raises(RuntimeError, match=match_message):
decode_jpeg(data)
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(FAKEDATA_DIR, ".png")],
)
@pytest.mark.parametrize(
"pil_mode, mode",
[
(None, ImageReadMode.UNCHANGED),
("L", ImageReadMode.GRAY),
("LA", ImageReadMode.GRAY_ALPHA),
("RGB", ImageReadMode.RGB),
("RGBA", ImageReadMode.RGB_ALPHA),
],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("decode_fun", (decode_png, decode_image))
def test_decode_png(img_path, pil_mode, mode, scripted, decode_fun):
if scripted:
decode_fun = torch.jit.script(decode_fun)
with Image.open(img_path) as img:
if pil_mode is not None:
img = img.convert(pil_mode)
img_pil = torch.from_numpy(np.array(img))
img_pil = normalize_dimensions(img_pil)
if img_path.endswith("16.png"):
# 16 bits image decoding is supported, but only as a private API
# FIXME: see https://github.com/pytorch/vision/issues/4731 for potential solutions to making it public
with pytest.raises(RuntimeError, match="At most 8-bit PNG images are supported"):
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
img_lpng = _read_png_16(img_path, mode=mode)
assert img_lpng.dtype == torch.int32
# PIL converts 16 bits pngs in uint8
img_lpng = torch.round(img_lpng / (2**16 - 1) * 255).to(torch.uint8)
else:
data = read_file(img_path)
img_lpng = decode_fun(data, mode=mode)
tol = 0 if pil_mode is None else 1
if PILLOW_VERSION >= (8, 3) and pil_mode == "LA":
# Avoid checking the transparency channel until
# https://github.com/python-pillow/Pillow/issues/5593#issuecomment-878244910
# is fixed.
# TODO: remove once fix is released in PIL. Should be > 8.3.1.
img_lpng, img_pil = img_lpng[0], img_pil[0]
torch.testing.assert_close(img_lpng, img_pil, atol=tol, rtol=0)
def test_decode_png_errors():
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_png(torch.empty((), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Content is not png"):
decode_png(torch.randint(3, 5, (300,), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Out of bound read in decode_png"):
decode_png(read_file(os.path.join(DAMAGED_PNG, "sigsegv.png")))
with pytest.raises(RuntimeError, match="Content is too small for png"):
decode_png(read_file(os.path.join(TOOSMALL_PNG, "heapbof.png")))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_png(img_path, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
encode = torch.jit.script(encode_png) if scripted else encode_png
png_buf = encode(img_pil, compression_level=6)
rec_img = Image.open(io.BytesIO(bytes(png_buf.tolist())))
rec_img = torch.from_numpy(np.array(rec_img))
rec_img = rec_img.permute(2, 0, 1)
assert_equal(img_pil, rec_img)
def test_encode_png_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_png(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=-1)
with pytest.raises(RuntimeError, match="Compression level should be between 0 and 9"):
encode_png(torch.empty((3, 100, 100), dtype=torch.uint8), compression_level=10)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_png(torch.empty((5, 100, 100), dtype=torch.uint8))
@pytest.mark.parametrize(
"img_path",
[pytest.param(png_path, id=_get_safe_image_name(png_path)) for png_path in get_images(IMAGE_DIR, ".png")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_png(img_path, tmpdir, scripted):
pil_image = Image.open(img_path)
img_pil = torch.from_numpy(np.array(pil_image))
img_pil = img_pil.permute(2, 0, 1)
filename, _ = os.path.splitext(os.path.basename(img_path))
torch_png = os.path.join(tmpdir, f"{filename}_torch.png")
write = torch.jit.script(write_png) if scripted else write_png
write(img_pil, torch_png, compression_level=6)
saved_image = torch.from_numpy(np.array(Image.open(torch_png)))
saved_image = saved_image.permute(2, 0, 1)
assert_equal(img_pil, saved_image)
def test_read_image():
# Just testing torchcsript, the functionality is somewhat tested already in other tests.
path = next(get_images(IMAGE_ROOT, ".jpg"))
out = read_image(path)
out_scripted = torch.jit.script(read_image)(path)
torch.testing.assert_close(out, out_scripted, atol=0, rtol=0)
@pytest.mark.parametrize("scripted", (True, False))
def test_read_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
fun = torch.jit.script(read_file) if scripted else read_file
data = fun(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
with pytest.raises(RuntimeError, match="No such file or directory: 'tst'"):
read_file("tst")
def test_read_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
with open(fpath, "wb") as f:
f.write(content)
data = read_file(fpath)
expected = torch.tensor(list(content), dtype=torch.uint8)
os.unlink(fpath)
assert_equal(data, expected)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_file(tmpdir, scripted):
fname, content = "test1.bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write = torch.jit.script(write_file) if scripted else write_file
write(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
def test_write_file_non_ascii(tmpdir):
fname, content = "日本語(Japanese).bin", b"TorchVision\211\n"
fpath = os.path.join(tmpdir, fname)
content_tensor = torch.tensor(list(content), dtype=torch.uint8)
write_file(fpath, content_tensor)
with open(fpath, "rb") as f:
saved_content = f.read()
os.unlink(fpath)
assert content == saved_content
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
def test_read_1_bit_png(shape, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path)
img2 = normalize_dimensions(torch.as_tensor(pixels * 255, dtype=torch.uint8))
assert_equal(img1, img2)
@pytest.mark.parametrize(
"shape",
[
(27, 27),
(60, 60),
(105, 105),
],
)
@pytest.mark.parametrize(
"mode",
[
ImageReadMode.UNCHANGED,
ImageReadMode.GRAY,
],
)
def test_read_1_bit_png_consistency(shape, mode, tmpdir):
np_rng = np.random.RandomState(0)
image_path = os.path.join(tmpdir, f"test_{shape}.png")
pixels = np_rng.rand(*shape) > 0.5
img = Image.fromarray(pixels)
img.save(image_path)
img1 = read_image(image_path, mode)
img2 = read_image(image_path, mode)
assert_equal(img1, img2)
def test_read_interlaced_png():
imgs = list(get_images(INTERLACED_PNG, ".png"))
with Image.open(imgs[0]) as im1, Image.open(imgs[1]) as im2:
assert not (im1.info.get("interlace") is im2.info.get("interlace"))
img1 = read_image(imgs[0])
img2 = read_image(imgs[1])
assert_equal(img1, img2)
@needs_cuda
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("mode", [ImageReadMode.UNCHANGED, ImageReadMode.GRAY, ImageReadMode.RGB])
@pytest.mark.parametrize("scripted", (False, True))
def test_decode_jpeg_cuda(mode, img_path, scripted):
if "cmyk" in img_path:
pytest.xfail("Decoding a CMYK jpeg isn't supported")
data = read_file(img_path)
img = decode_image(data, mode=mode)
f = torch.jit.script(decode_jpeg) if scripted else decode_jpeg
img_nvjpeg = f(data, mode=mode, device="cuda")
# Some difference expected between jpeg implementations
assert (img.float() - img_nvjpeg.cpu().float()).abs().mean() < 2
@needs_cuda
def test_decode_image_cuda_raises():
data = torch.randint(0, 127, size=(255,), device="cuda", dtype=torch.uint8)
with pytest.raises(RuntimeError):
decode_image(data)
@needs_cuda
@pytest.mark.parametrize("cuda_device", ("cuda", "cuda:0", torch.device("cuda")))
def test_decode_jpeg_cuda_device_param(cuda_device):
"""Make sure we can pass a string or a torch.device as device param"""
path = next(path for path in get_images(IMAGE_ROOT, ".jpg") if "cmyk" not in path)
data = read_file(path)
decode_jpeg(data, device=cuda_device)
@needs_cuda
def test_decode_jpeg_cuda_errors():
data = read_file(next(get_images(IMAGE_ROOT, ".jpg")))
with pytest.raises(RuntimeError, match="Expected a non empty 1-dimensional tensor"):
decode_jpeg(data.reshape(-1, 1), device="cuda")
with pytest.raises(RuntimeError, match="input tensor must be on CPU"):
decode_jpeg(data.to("cuda"), device="cuda")
with pytest.raises(RuntimeError, match="Expected a torch.uint8 tensor"):
decode_jpeg(data.to(torch.float), device="cuda")
with pytest.raises(RuntimeError, match="Expected a cuda device"):
torch.ops.image.decode_jpeg_cuda(data, ImageReadMode.UNCHANGED.value, "cpu")
def test_encode_jpeg_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32))
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=-1)
with pytest.raises(ValueError, match="Image quality should be a positive number between 1 and 100"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.uint8), quality=101)
with pytest.raises(RuntimeError, match="The number of channels should be 1 or 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8))
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_encode_jpeg(img_path, scripted):
img = read_image(img_path)
pil_img = F.to_pil_image(img)
buf = io.BytesIO()
pil_img.save(buf, format="JPEG", quality=75)
encoded_jpeg_pil = torch.frombuffer(buf.getvalue(), dtype=torch.uint8)
encode = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
for src_img in [img, img.contiguous()]:
encoded_jpeg_torch = encode(src_img, quality=75)
assert_equal(encoded_jpeg_torch, encoded_jpeg_pil)
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize("scripted", (True, False))
@pytest.mark.parametrize("contiguous", (True, False))
def test_batch_encode_jpegs(scripted, contiguous):
_test_batch_encode_jpegs_helper(scripted, contiguous, "cpu")
@needs_cuda
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(IMAGE_ROOT, ".jpg")],
)
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("contiguous", (False, True))
def test_single_encode_jpeg_cuda(img_path, scripted, contiguous):
decoded_image_tv = read_image(img_path)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
if "cmyk" in img_path:
pytest.xfail("Encoding a CMYK jpeg isn't supported")
if decoded_image_tv.shape[0] == 1:
pytest.xfail("Decoding a grayscale jpeg isn't supported")
# For more detail as to why check out: https://github.com/NVIDIA/cuda-samples/issues/23#issuecomment-559283013
if contiguous:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image_tv = decoded_image_tv[None].contiguous(memory_format=torch.channels_last)[0]
encoded_jpeg_cuda_tv = encode_fn(decoded_image_tv.cuda(), quality=75)
decoded_jpeg_cuda_tv = decode_jpeg(encoded_jpeg_cuda_tv.cpu())
# the actual encoded bytestreams from libnvjpeg and libjpeg-turbo differ for the same quality
# instead, we re-decode the encoded image and compare to the original
abs_mean_diff = (decoded_jpeg_cuda_tv.float() - decoded_image_tv.float()).abs().mean().item()
assert abs_mean_diff < 3
def _test_batch_encode_jpegs_helper(scripted, contiguous, device):
decoded_images_tv = []
for jpeg_path in get_images(IMAGE_ROOT, ".jpg"):
if "cmyk" in jpeg_path:
continue
decoded_image = read_image(jpeg_path)
if decoded_image.shape[0] == 1:
continue
if contiguous:
decoded_image = decoded_image[None].contiguous(memory_format=torch.contiguous_format)[0]
else:
decoded_image = decoded_image[None].contiguous(memory_format=torch.channels_last)[0]
decoded_images_tv.append(decoded_image)
encode_fn = torch.jit.script(encode_jpeg) if scripted else encode_jpeg
decoded_images_tv_device = [img.to(device=device) for img in decoded_images_tv]
encoded_jpegs_tv_device = encode_fn(decoded_images_tv_device, quality=75)
encoded_jpegs_tv_device = [decode_jpeg(img.cpu()) for img in encoded_jpegs_tv_device]
for original, encoded_decoded in zip(decoded_images_tv, encoded_jpegs_tv_device):
c, h, w = original.shape
abs_mean_diff = (original.float() - encoded_decoded.float()).abs().mean().item()
assert abs_mean_diff < 3
@needs_cuda
@pytest.mark.parametrize("scripted", (False, True))
@pytest.mark.parametrize("contiguous", (False, True))
def test_batch_encode_jpegs_cuda(scripted, contiguous):
_test_batch_encode_jpegs_helper(scripted, contiguous, "cuda")
@needs_cuda
def test_single_encode_jpeg_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"))
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(torch.empty((100, 100), dtype=torch.uint8, device="cuda"))
@needs_cuda
def test_batch_encode_jpegs_cuda_errors():
with pytest.raises(RuntimeError, match="Input tensor dtype should be uint8"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.float32, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 5"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((5, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="The number of channels should be 3, got: 1"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((1, 3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input data should be a 3-dimensional tensor"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(RuntimeError, match="Input tensor should be on CPU"):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
]
)
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cpu"),
]
)
if torch.cuda.device_count() >= 2:
with pytest.raises(
RuntimeError, match="All input tensors must be on the same CUDA device when encoding with nvjpeg"
):
encode_jpeg(
[
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:0"),
torch.empty((3, 100, 100), dtype=torch.uint8, device="cuda:1"),
]
)
with pytest.raises(ValueError, match="encode_jpeg requires at least one input tensor when a list is passed"):
encode_jpeg([])
@pytest.mark.skipif(IS_MACOS, reason="https://github.com/pytorch/vision/issues/8031")
@pytest.mark.parametrize(
"img_path",
[pytest.param(jpeg_path, id=_get_safe_image_name(jpeg_path)) for jpeg_path in get_images(ENCODE_JPEG, ".jpg")],
)
@pytest.mark.parametrize("scripted", (True, False))
def test_write_jpeg(img_path, tmpdir, scripted):
tmpdir = Path(tmpdir)
img = read_image(img_path)
pil_img = F.to_pil_image(img)
torch_jpeg = str(tmpdir / "torch.jpg")
pil_jpeg = str(tmpdir / "pil.jpg")
write = torch.jit.script(write_jpeg) if scripted else write_jpeg
write(img, torch_jpeg, quality=75)
pil_img.save(pil_jpeg, quality=75)
with open(torch_jpeg, "rb") as f:
torch_bytes = f.read()
with open(pil_jpeg, "rb") as f:
pil_bytes = f.read()
assert_equal(torch_bytes, pil_bytes)
def test_pathlib_support(tmpdir):
# Just make sure pathlib.Path is supported where relevant
jpeg_path = Path(next(get_images(ENCODE_JPEG, ".jpg")))
read_file(jpeg_path)
read_image(jpeg_path)
write_path = Path(tmpdir) / "whatever"
img = torch.randint(0, 10, size=(3, 4, 4), dtype=torch.uint8)
write_file(write_path, data=img.flatten())
write_jpeg(img, write_path)
write_png(img, write_path)
if __name__ == "__main__":
pytest.main([__file__])