Skip to content

Commit 12c4d5c

Browse files
committed
hypernetwork training mk1
1 parent f7c787e commit 12c4d5c

File tree

12 files changed

+414
-107
lines changed

12 files changed

+414
-107
lines changed

modules/hypernetwork.py

-88
This file was deleted.

modules/hypernetwork/hypernetwork.py

+267
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,267 @@
1+
import datetime
2+
import glob
3+
import html
4+
import os
5+
import sys
6+
import traceback
7+
import tqdm
8+
9+
import torch
10+
11+
from ldm.util import default
12+
from modules import devices, shared, processing, sd_models
13+
import torch
14+
from torch import einsum
15+
from einops import rearrange, repeat
16+
import modules.textual_inversion.dataset
17+
18+
19+
class HypernetworkModule(torch.nn.Module):
20+
def __init__(self, dim, state_dict=None):
21+
super().__init__()
22+
23+
self.linear1 = torch.nn.Linear(dim, dim * 2)
24+
self.linear2 = torch.nn.Linear(dim * 2, dim)
25+
26+
if state_dict is not None:
27+
self.load_state_dict(state_dict, strict=True)
28+
else:
29+
self.linear1.weight.data.fill_(0.0001)
30+
self.linear1.bias.data.fill_(0.0001)
31+
self.linear2.weight.data.fill_(0.0001)
32+
self.linear2.bias.data.fill_(0.0001)
33+
34+
self.to(devices.device)
35+
36+
def forward(self, x):
37+
return x + (self.linear2(self.linear1(x)))
38+
39+
40+
class Hypernetwork:
41+
filename = None
42+
name = None
43+
44+
def __init__(self, name=None):
45+
self.filename = None
46+
self.name = name
47+
self.layers = {}
48+
self.step = 0
49+
self.sd_checkpoint = None
50+
self.sd_checkpoint_name = None
51+
52+
for size in [320, 640, 768, 1280]:
53+
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size))
54+
55+
def weights(self):
56+
res = []
57+
58+
for k, layers in self.layers.items():
59+
for layer in layers:
60+
layer.train()
61+
res += [layer.linear1.weight, layer.linear1.bias, layer.linear2.weight, layer.linear2.bias]
62+
63+
return res
64+
65+
def save(self, filename):
66+
state_dict = {}
67+
68+
for k, v in self.layers.items():
69+
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
70+
71+
state_dict['step'] = self.step
72+
state_dict['name'] = self.name
73+
state_dict['sd_checkpoint'] = self.sd_checkpoint
74+
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
75+
76+
torch.save(state_dict, filename)
77+
78+
def load(self, filename):
79+
self.filename = filename
80+
if self.name is None:
81+
self.name = os.path.splitext(os.path.basename(filename))[0]
82+
83+
state_dict = torch.load(filename, map_location='cpu')
84+
85+
for size, sd in state_dict.items():
86+
if type(size) == int:
87+
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
88+
89+
self.name = state_dict.get('name', self.name)
90+
self.step = state_dict.get('step', 0)
91+
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
92+
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
93+
94+
95+
def load_hypernetworks(path):
96+
res = {}
97+
98+
for filename in glob.iglob(path + '**/*.pt', recursive=True):
99+
try:
100+
hn = Hypernetwork()
101+
hn.load(filename)
102+
res[hn.name] = hn
103+
except Exception:
104+
print(f"Error loading hypernetwork {filename}", file=sys.stderr)
105+
print(traceback.format_exc(), file=sys.stderr)
106+
107+
return res
108+
109+
110+
def attention_CrossAttention_forward(self, x, context=None, mask=None):
111+
h = self.heads
112+
113+
q = self.to_q(x)
114+
context = default(context, x)
115+
116+
hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None)
117+
118+
if hypernetwork_layers is not None:
119+
hypernetwork_k, hypernetwork_v = hypernetwork_layers
120+
121+
self.hypernetwork_k = hypernetwork_k
122+
self.hypernetwork_v = hypernetwork_v
123+
124+
context_k = hypernetwork_k(context)
125+
context_v = hypernetwork_v(context)
126+
else:
127+
context_k = context
128+
context_v = context
129+
130+
k = self.to_k(context_k)
131+
v = self.to_v(context_v)
132+
133+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
134+
135+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
136+
137+
if mask is not None:
138+
mask = rearrange(mask, 'b ... -> b (...)')
139+
max_neg_value = -torch.finfo(sim.dtype).max
140+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
141+
sim.masked_fill_(~mask, max_neg_value)
142+
143+
# attention, what we cannot get enough of
144+
attn = sim.softmax(dim=-1)
145+
146+
out = einsum('b i j, b j d -> b i d', attn, v)
147+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
148+
return self.to_out(out)
149+
150+
151+
def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt):
152+
assert hypernetwork_name, 'embedding not selected'
153+
154+
shared.hypernetwork = shared.hypernetworks[hypernetwork_name]
155+
156+
shared.state.textinfo = "Initializing hypernetwork training..."
157+
shared.state.job_count = steps
158+
159+
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
160+
161+
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
162+
163+
if save_hypernetwork_every > 0:
164+
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
165+
os.makedirs(hypernetwork_dir, exist_ok=True)
166+
else:
167+
hypernetwork_dir = None
168+
169+
if create_image_every > 0:
170+
images_dir = os.path.join(log_directory, "images")
171+
os.makedirs(images_dir, exist_ok=True)
172+
else:
173+
images_dir = None
174+
175+
cond_model = shared.sd_model.cond_stage_model
176+
177+
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
178+
with torch.autocast("cuda"):
179+
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file)
180+
181+
hypernetwork = shared.hypernetworks[hypernetwork_name]
182+
weights = hypernetwork.weights()
183+
for weight in weights:
184+
weight.requires_grad = True
185+
186+
optimizer = torch.optim.AdamW(weights, lr=learn_rate)
187+
188+
losses = torch.zeros((32,))
189+
190+
last_saved_file = "<none>"
191+
last_saved_image = "<none>"
192+
193+
ititial_step = hypernetwork.step or 0
194+
if ititial_step > steps:
195+
return hypernetwork, filename
196+
197+
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
198+
for i, (x, text) in pbar:
199+
hypernetwork.step = i + ititial_step
200+
201+
if hypernetwork.step > steps:
202+
break
203+
204+
if shared.state.interrupted:
205+
break
206+
207+
with torch.autocast("cuda"):
208+
c = cond_model([text])
209+
210+
x = x.to(devices.device)
211+
loss = shared.sd_model(x.unsqueeze(0), c)[0]
212+
del x
213+
214+
losses[hypernetwork.step % losses.shape[0]] = loss.item()
215+
216+
optimizer.zero_grad()
217+
loss.backward()
218+
optimizer.step()
219+
220+
pbar.set_description(f"loss: {losses.mean():.7f}")
221+
222+
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
223+
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
224+
hypernetwork.save(last_saved_file)
225+
226+
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
227+
last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
228+
229+
preview_text = text if preview_image_prompt == "" else preview_image_prompt
230+
231+
p = processing.StableDiffusionProcessingTxt2Img(
232+
sd_model=shared.sd_model,
233+
prompt=preview_text,
234+
steps=20,
235+
do_not_save_grid=True,
236+
do_not_save_samples=True,
237+
)
238+
239+
processed = processing.process_images(p)
240+
image = processed.images[0]
241+
242+
shared.state.current_image = image
243+
image.save(last_saved_image)
244+
245+
last_saved_image += f", prompt: {preview_text}"
246+
247+
shared.state.job_no = hypernetwork.step
248+
249+
shared.state.textinfo = f"""
250+
<p>
251+
Loss: {losses.mean():.7f}<br/>
252+
Step: {hypernetwork.step}<br/>
253+
Last prompt: {html.escape(text)}<br/>
254+
Last saved embedding: {html.escape(last_saved_file)}<br/>
255+
Last saved image: {html.escape(last_saved_image)}<br/>
256+
</p>
257+
"""
258+
259+
checkpoint = sd_models.select_checkpoint()
260+
261+
hypernetwork.sd_checkpoint = checkpoint.hash
262+
hypernetwork.sd_checkpoint_name = checkpoint.model_name
263+
hypernetwork.save(filename)
264+
265+
return hypernetwork, filename
266+
267+

0 commit comments

Comments
 (0)