-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmain.py
227 lines (195 loc) · 6.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
from keras.models import load_model
from keras.optimizers import RMSprop
from keras.callbacks import LearningRateScheduler, TensorBoard, \
ModelCheckpoint, EarlyStopping
from args import get_arguments
from models.linknet import LinkNet
from models.conv2d_transpose import Conv2DTranspose
from metrics.miou import MeanIoU
from callbacks import TensorBoardPrediction
def train(
epochs,
initial_epoch,
train_generator,
val_generator,
learning_rate,
lr_decay,
lr_decay_epochs,
pretrained_encoder='True',
weights_path='./checkpoints/linknet_encoder_weights.h5',
checkpoint_model=None,
verbose=1,
workers=1,
checkpoint_path='./checkpoints',
tensorboard_logdir='./checkpoints'
):
# Create the model
image_batch, label_batch = train_generator[0]
num_classes = label_batch[0].shape[-1]
input_shape = image_batch[0].shape
if checkpoint_model is None:
model = LinkNet(num_classes, input_shape=input_shape)
model = model.get_model(
pretrained_encoder=pretrained_encoder, weights_path=weights_path
)
else:
model = checkpoint_model
print(model.summary())
# Optimizer: RMSprop
optim = RMSprop(learning_rate)
# Initialize mIoU metric
miou_metric = MeanIoU(num_classes)
# Compile the model
# Loss: Categorical crossentropy loss
model.compile(
optimizer=optim,
loss='categorical_crossentropy',
metrics=['accuracy', miou_metric.mean_iou]
)
# Set up learining rate scheduler
def _lr_decay(epoch, lr):
return lr_decay**(epoch // lr_decay_epochs) * learning_rate
lr_scheduler = LearningRateScheduler(_lr_decay)
# TensorBoard callback
tensorboard = TensorBoard(
log_dir=tensorboard_logdir,
histogram_freq=0,
write_graph=True,
write_images=True
)
# Tensorboard callback that displays a random sample with respective
# target and prediction
tensorboard_viz = TensorBoardPrediction(
val_generator,
val_generator.get_class_rgb_encoding(),
log_dir=tensorboard_logdir
)
# Checkpoint callback - save the best model
checkpoint = ModelCheckpoint(
checkpoint_path,
monitor='val_mean_iou',
save_best_only=True,
mode='max'
)
# Early stopping
early_stop = EarlyStopping(
monitor='val_mean_iou', min_delta=0.01, patience=10, mode='max'
)
callbacks = [
lr_scheduler, tensorboard, tensorboard_viz, checkpoint, early_stop
]
# Train the model
model.fit_generator(
train_generator,
epochs=epochs,
initial_epoch=initial_epoch,
callbacks=callbacks,
workers=workers,
verbose=verbose,
use_multiprocessing=True,
validation_data=val_generator
)
return model
def test(model, test_generator, workers, verbose):
metrics = model.evaluate_generator(
test_generator,
workers=workers,
use_multiprocessing=True,
verbose=verbose,
)
print("--> Evaluation metrics")
for idx, value in enumerate(metrics):
print("{0}: {1}".format(model.metrics_names[idx], value))
return model
def main():
# Get command line arguments
args = get_arguments()
# Import the desired dataset generator
if args.dataset.lower() == 'camvid':
from data import CamVidGenerator as DataGenerator
elif args.dataset.lower() == 'cityscapes':
from data import CityscapesGenerator as DataGenerator
else:
# Should never happen...but just in case it does
raise RuntimeError(
"\"{0}\" is not a supported dataset.".format(args.dataset)
)
# Initialize training and validation dataloaders
if args.mode.lower() in ('train', 'full'):
train_generator = DataGenerator(
args.dataset_dir,
batch_size=args.batch_size,
mode='train'
)
val_generator = DataGenerator(
args.dataset_dir,
batch_size=args.batch_size,
mode='val'
)
# Some information about the dataset
image_batch, label_batch = train_generator[0]
num_classes = label_batch[0].shape[-1]
print("--> Training batches: {}".format(len(train_generator)))
print("--> Validation batches: {}".format(len(val_generator)))
print("--> Image size: {}".format(image_batch.shape))
print("--> Label size: {}".format(label_batch.shape))
print("--> No. of classes: {}".format(num_classes))
# Initialize test dataloader
if args.mode.lower() in ('test', 'full'):
test_generator = DataGenerator(
args.dataset_dir,
batch_size=args.batch_size,
mode='test'
)
# Some information about the dataset
image_batch, label_batch = test_generator[0]
num_classes = label_batch[0].shape[-1]
print("--> Testing batches: {}".format(len(test_generator)))
print("--> Image size: {}".format(image_batch.shape))
print("--> Label size: {}".format(label_batch.shape))
print("--> No. of classes: {}".format(num_classes))
checkpoint_path = os.path.join(
args.checkpoint_dir, args.name, args.name + '.h5'
)
print("--> Checkpoint path: {}".format(checkpoint_path))
model = None
if args.mode.lower() in ('train', 'full'):
if args.resume:
print("--> Resuming model: {}".format(checkpoint_path))
model = load_model(
checkpoint_path,
custom_objects={
'Conv2DTranspose': Conv2DTranspose,
'mean_iou': MeanIoU(num_classes).mean_iou
}
)
tensorboard_logdir = os.path.join(args.checkpoint_dir, args.name)
model = train(
args.epochs,
args.initial_epoch,
train_generator,
val_generator,
args.learning_rate,
args.lr_decay,
args.lr_decay_epochs,
pretrained_encoder=args.pretrained_encoder,
weights_path=args.weights_path,
checkpoint_model=model,
verbose=args.verbose,
workers=args.workers,
checkpoint_path=checkpoint_path,
tensorboard_logdir=tensorboard_logdir,
)
if args.mode.lower() in ('test', 'full'):
print("--> Loading model: {}".format(checkpoint_path))
model = load_model(
checkpoint_path,
custom_objects={
'Conv2DTranspose': Conv2DTranspose,
'mean_iou': MeanIoU(num_classes).mean_iou
}
)
model = test(model, test_generator, args.workers, args.verbose)
if __name__ == '__main__':
main()