-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path_geometry.py
74 lines (58 loc) · 2.2 KB
/
_geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
*
* _match
* GEOVAR MATCH MODULE
*
* Module designed to match corresponding nodes, elements, faces, across
* geomatric variants
*
*
* AUTHOR : Fluvio L. Lobo Fenoglietto
* DATE : June 12th, 2019
*
'''
import numpy as np
# ************************************************************************
# FUNCTIONS ============================================================ *
# ************************************************************************
def node_coord_match( nodeset ):
'''
MATCHES CORRESPONDING NODES ON THE BASIS OF COORDINATE EXACT SIMILARITIES
'''
nodeset_len = len(nodeset)
#print(nodeset_len)
match_axis = []
match_mean = []
match_sd = []
for i in range( 0, nodeset_len ):
# determine by average
nodeset_nodes = nodeset[str(i)]['nodes']
nodes_len = len(nodeset_nodes)
nodes_sum = np.zeros((3))
nodes_mean = np.zeros((3))
nodes_sd = np.zeros((3))
for j in range( 0, nodes_len ):
nodes_sum = nodes_sum + nodeset_nodes[j]
nodes_mean = nodes_sum / nodes_len
for j in range( 0, nodes_len ):
nodes_sd = nodes_sd + ( nodeset_nodes[j] - nodes_mean )**2
nodes_sd = np.sqrt( nodes_sd / nodes_len )
# determine smallest deviation
nodes_sd_min = np.min( nodes_sd )
#print( nodes_sd_min )
# determine if smallest deviation meets tolerance
tol = 1e-10 # --------------------------------------------------------------------> this value needs to be extracted, used as an input
if np.abs(nodes_sd_min) < tol:
# capturing index of smallest deviation
# capturing the average value of the smallest deviation
for i in range( 0, len(nodes_sd) ):
if nodes_sd[i] == nodes_sd_min:
min_index = i
break
nodes_mean_min = nodes_mean[min_index]
# results
match_axis.append( min_index )
match_mean.append( nodes_mean_min )
match_sd.append( nodes_sd_min )
print( match_axis, match_mean, match_sd )
# --------------------------