Parameter |
Formula |
Getting R from Parameter |
Getting $\alpha$ from Parameter |
circumference |
$2{\pi}R$ |
$\frac{x}{2\pi}$ |
- |
area |
${\pi}R^2$ |
$\sqrt{\frac{x}{\pi}}$ |
- |
arc length |
${\alpha}R$ |
$\frac{x}{\alpha}$ |
$\frac{x}{R}$ |
chord length |
$2R \sin(\frac{\alpha}{2})$ |
$\frac{x}{2 \sin(\frac{\alpha}{2})}$ |
$2 \arcsin(\frac{x}{2R})$ |
sector area |
$\frac{\alpha}{2} R^2$ |
$\sqrt{\frac{2x}{\alpha}}$ |
$2 \frac{x}{R^2}$ |
segment area |
$\frac{R^2}{2}(\alpha - \sin(\alpha))$ |
$\sqrt{2\frac{x}{\alpha - \sin(\alpha)}}$ |
brute force method |
perpendicular distance from circle center to chord |
$R \cos(\frac{\alpha}{2})$ |
$\frac{x}{\cos(\frac{\alpha}{2})}$ |
$2 \arccos(\frac{x}{R})$ |
perpendicular distance from circle edge to chord |
$R - R \cdot \cos\left(\frac{\alpha}{2}\right)$ |
$-x \cdot \frac{1}{\cos\left(\frac{\alpha}{2}\right)-1}$ |
$2 \arccos\left(\frac{-x+R}{R}\right)$ |

Operation $\alpha - \sin(\alpha)$ cannot be simply reversed, some technique must be employeed.
The function below uses the Newton-Raphson method:
$x = \alpha - \sin(\alpha) \implies \text{calcAlpha}(x) \approx \alpha$
function calcAlpha(x) {
const f = alpha => alpha - Math.sin(alpha) - x;
const df = alpha => 1 - Math.cos(alpha);
const tolerance = 1e-10;
let alpha = x;
let error = Infinity;
while (error > tolerance) {
const nextAlpha = alpha - f(alpha) / df(alpha);
error = Math.abs(nextAlpha - alpha);
alpha = nextAlpha;
}
return alpha;
}