-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathupload.py
309 lines (256 loc) · 12.2 KB
/
upload.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import math
import os
import numpy as np
from dataclasses import dataclass
import torch
import torch.nn
import torch.nn.functional as F
from torch.utils.data._utils.collate import default_collate
from torchvision import transforms
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
from transformers import T5ForConditionalGeneration
import matplotlib.pyplot as plt
from diffusers import UNet2DConditionModel
from diffusers import DDPMScheduler
from diffusers import DDPMPipeline
from diffusers.optimization import get_cosine_schedule_with_warmup
from diffusers.hub_utils import init_git_repo, push_to_hub
from accelerate import notebook_launcher
from accelerate import Accelerator
from PIL import Image
torch.backends.cuda.matmul.allow_tf32=True
from tqdm.auto import tqdm
batch_size = 16
@dataclass
class TrainingConfig:
image_size = (64, 320) # the generated image resolution
train_batch_size = batch_size
eval_batch_size = batch_size # how many images to sample during evaluation
num_epochs = 50
gradient_accumulation_steps = 1
#learning_rate = 1e-4
learning_rate = 1e-4
lr_warmup_steps = 500
save_image_epochs = 10
save_model_epochs = 30
mixed_precision = 'no' # `no` for float32, `fp16` for automatic mixed precision
output_dir = 'latex2im' # the model namy locally and on the HF Hub
push_to_hub = False # whether to upload the saved model to the HF Hub
hub_private_repo = False
overwrite_output_dir = True # overwrite the old model when re-running the notebook
seed = 0
config = TrainingConfig()
config.dataset_name = "yuntian-deng/im2latex-100k"
dataset = load_dataset(config.dataset_name, split="val")
model_type = "EleutherAI/gpt-neo-125M"
#tokenizer = AutoTokenizer.from_pretrained("t5-small")
tokenizer = AutoTokenizer.from_pretrained(model_type, max_length=512)
#tokenizer.add_special_tokens({'pad_token': 'Ġgazed'})
#import pdb; pdb.set_trace()
preprocess = transforms.Compose(
[
#transforms.Grayscale(num_output_channels=1),
#transforms.Resize((config.image_size, config.image_size)),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def preprocess_formula(formula):
example = tokenizer(formula)
input_ids = example['input_ids']
attention_mask = example['attention_mask']
return input_ids, attention_mask
def transform(examples):
images = [preprocess(image.convert("RGB")) for image in examples["image"]]
formulas_and_masks = [preprocess_formula(formula) for formula in examples['formula']]
formulas = [item[0] for item in formulas_and_masks]
masks = [item[1] for item in formulas_and_masks]
return {"images": images, 'input_ids': formulas, 'attention_mask': masks}
#return {"images": images}
dataset.set_transform(transform)
#import pdb; pdb.set_trace()
eos_id = tokenizer.encode(tokenizer.eos_token)[0]
def collate_fn(examples):
#import pdb; pdb.set_trace()
max_len = max([len(example['input_ids']) for example in examples]) + 1
for example in examples:
orig_len = len(example['input_ids'])
formula = example['input_ids'] + [eos_id,] * (max_len - orig_len)
example['input_ids'] = torch.LongTensor(formula)
attention_mask = example['attention_mask'] + [1,] + [0,] * (max_len - orig_len - 1)
example['attention_mask'] = torch.LongTensor(attention_mask)
batch = default_collate(examples)
#for k in batch:
# v = batch[k]
# if k != 'images':
# import pdb; pdb.set_trace()
# batch[k] = torch.LongTensor(v)
return batch
torch.manual_seed(1234)
import random
random.seed(1234)
np.random.seed(1234)
#train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True, collate_fn=collate_fn)
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=config.train_batch_size, shuffle=True, collate_fn=collate_fn, worker_init_fn=np.random.seed(0), num_workers=0)
eval_dataloader = train_dataloader
model = UNet2DConditionModel(
sample_size=config.image_size, # the target image resolution
in_channels=3, # the number of input channels, 3 for RGB images
out_channels=3, # the number of output channels
layers_per_block=2, # how many ResNet layers to use per UNet block
block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channes for each UNet block
down_block_types=(
"DownBlock2D", # a regular ResNet downsampling block
"DownBlock2D",
"CrossAttnDecoderPositionEncoderPositionDownBlock2D",
"CrossAttnDecoderPositionEncoderPositionDownBlock2D",
#"CrossAttnDownBlock2D",
"CrossAttnDecoderPositionEncoderPositionDownBlock2D", # a ResNet downsampling block with spatial self-attention
"CrossAttnDecoderPositionEncoderPositionDownBlock2D",
),
up_block_types=(
"CrossAttnDecoderPositionEncoderPositionUpBlock2D", # a regular ResNet upsampling block
"CrossAttnDecoderPositionEncoderPositionUpBlock2D", # a ResNet upsampling block with spatial self-attention
"CrossAttnDecoderPositionEncoderPositionUpBlock2D",
"CrossAttnDecoderPositionEncoderPositionUpBlock2D",
#"CrossAttnUpBlock2D",
"UpBlock2D",
"UpBlock2D"
),
cross_attention_dim=768,
mid_block_type='UNetMidBlock2DCrossAttnDecoderPositionEncoderPosition'
)
#t5_encoder = T5ForConditionalGeneration.from_pretrained('t5-small').encoder
t5_encoder = AutoModel.from_pretrained(model_type).cuda()
def forward_t5(input_ids, attention_mask):
with torch.no_grad():
#import pdb; pdb.set_trace()
outputs = t5_encoder(input_ids=input_ids, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state
last_hidden_state = attention_mask.unsqueeze(-1) * last_hidden_state
return last_hidden_state
#mean = (masks.unsqueeze(-1) * last_hidden_state).sum(dim=-2) / masks.sum(-1, keepdim=True)
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate)
lr_scheduler = get_cosine_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=config.lr_warmup_steps,
num_training_steps=(len(train_dataloader) * config.num_epochs),
)
def make_grid(images, rows, cols):
w, h = images[0].size
grid = Image.new('L', size=(cols*w, rows*h))
for i, image in enumerate(images):
grid.paste(image, box=(i%cols*w, i//cols*h))
return grid
def evaluate(config, epoch, pipeline):
# Sample some images from random noise (this is the backward diffusion process).
# The default pipeline output type is `List[PIL.Image]`
for step, batch in enumerate(train_dataloader):
clean_images = batch['images']
input_ids = batch['input_ids'].cuda()
masks = batch['attention_mask'].cuda()
encoder_hidden_states = forward_t5(input_ids, masks)
for iii, input_id in enumerate(input_ids):
formula = tokenizer.decode(input_id, skip_special_symbols=True).replace('<|endoftext|>', '')
print (f'{iii:04d}: {formula}')
print ()
images = pipeline(
batch_size = config.eval_batch_size,
generator=torch.manual_seed(config.seed),
encoder_hidden_states = encoder_hidden_states,
attention_mask=masks,
)["sample"]
# Make a grid out of the images
image_grid = make_grid(images, rows=batch_size, cols=1)
# Save the images
test_dir = os.path.join(config.output_dir, "samples")
os.makedirs(test_dir, exist_ok=True)
image_grid.save(f"{test_dir}/{step:04d}.png")
print ('='*10)
break
def train_loop(config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler):
# Initialize accelerator and tensorboard logging
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
logging_dir=os.path.join(config.output_dir, "logs")
)
if accelerator.is_main_process:
if config.push_to_hub:
repo = init_git_repo(config, at_init=True)
accelerator.init_trackers("train_example")
# Prepare everything
# There is no specific order to remember, you just need to unpack the
# objects in the same order you gave them to the prepare method.
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
global_step = 0
# Now you train the model
for epoch in range(config.num_epochs):
progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
progress_bar.set_description(f"Epoch {epoch}")
for step, batch in enumerate(train_dataloader):
clean_images = batch['images']
input_ids = batch['input_ids'].cuda()
masks = batch['attention_mask'].cuda()
encoder_hidden_states = forward_t5(input_ids, masks)
# Sample noise to add to the images
noise = torch.randn(clean_images.shape).to(clean_images.device)
bs = clean_images.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bs,), device=clean_images.device).long()
# Add noise to the clean images according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)
with accelerator.accumulate(model):
# Predict the noise residual
noise_pred = model(noisy_images, timesteps, encoder_hidden_states)["sample"]
loss = F.mse_loss(noise_pred, noise)
accelerator.backward(loss)
accelerator.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
global_step += 1
break
# After each epoch you optionally sample some demo images with evaluate() and save the model
if accelerator.is_main_process:
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
if (epoch + 1) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1:
evaluate(config, epoch, pipeline)
if (epoch + 1) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1:
if config.push_to_hub:
push_to_hub(config, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=True)
else:
pipeline.save_pretrained(config.output_dir)
args = (config, model, noise_scheduler, optimizer, train_dataloader, lr_scheduler)
#notebook_launcher(train_loop, args, num_processes=1)
state_dict = torch.load('model_e500_lr0.0001.pt.25', map_location='cpu')
state_dict_out = {}
for k in state_dict:
k_out = k.replace('module.', '')
state_dict_out[k_out] = state_dict[k]
model.load_state_dict(state_dict_out)
torch.manual_seed(1234)
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
logging_dir=os.path.join(config.output_dir, "logs")
)
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
pipeline = DDPMPipeline(unet=accelerator.unwrap_model(model), scheduler=noise_scheduler)
repo = init_git_repo(config, at_init=True)
push_to_hub(config, pipeline, repo, commit_message=f"init", blocking=True)
#evaluate(config, 0, pipeline)