-
Notifications
You must be signed in to change notification settings - Fork 202
/
Copy pathindex.js
173 lines (158 loc) · 5.36 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import {geoBounds as bounds, geoCentroid as centroid, geoInterpolate as interpolate, geoProjection as projection} from "d3-geo";
import {abs, degrees, epsilon, radians} from "../math.js";
import {default as matrix, multiply, inverse} from "./matrix.js";
// Creates a polyhedral projection.
// * root: a spanning tree of polygon faces. Nodes are automatically
// augmented with a transform matrix.
// * face: a function that returns the appropriate node for a given {lambda, phi}
// point (radians).
export default function(root, face) {
recurse(root, {transform: null});
function recurse(node, parent) {
node.edges = faceEdges(node.face);
// Find shared edge.
if (parent.face) {
var shared = node.shared = sharedEdge(node.face, parent.face),
m = matrix(shared.map(parent.project), shared.map(node.project));
node.transform = parent.transform ? multiply(parent.transform, m) : m;
// Replace shared edge in parent edges array.
var edges = parent.edges;
for (var i = 0, n = edges.length; i < n; ++i) {
if (pointEqual(shared[0], edges[i][1]) && pointEqual(shared[1], edges[i][0])) edges[i] = node;
if (pointEqual(shared[0], edges[i][0]) && pointEqual(shared[1], edges[i][1])) edges[i] = node;
}
edges = node.edges;
for (i = 0, n = edges.length; i < n; ++i) {
if (pointEqual(shared[0], edges[i][0]) && pointEqual(shared[1], edges[i][1])) edges[i] = parent;
if (pointEqual(shared[0], edges[i][1]) && pointEqual(shared[1], edges[i][0])) edges[i] = parent;
}
} else {
node.transform = parent.transform;
}
if (node.children) {
node.children.forEach(function(child) {
recurse(child, node);
});
}
return node;
}
function forward(lambda, phi) {
var node = face(lambda, phi),
point = node.project([lambda * degrees, phi * degrees]),
t;
if (t = node.transform) {
return [
t[0] * point[0] + t[1] * point[1] + t[2],
-(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
point[1] = -point[1];
return point;
}
// Naive inverse! A faster solution would use bounding boxes, or even a
// polygonal quadtree.
if (hasInverse(root)) forward.invert = function(x, y) {
var coordinates = faceInvert(root, [x, -y]);
return coordinates && (coordinates[0] *= radians, coordinates[1] *= radians, coordinates);
};
function faceInvert(node, coordinates) {
var invert = node.project.invert,
t = node.transform,
point = coordinates;
if (t) {
t = inverse(t);
point = [
t[0] * point[0] + t[1] * point[1] + t[2],
(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
if (invert && node === faceDegrees(p = invert(point))) return p;
var p,
children = node.children;
for (var i = 0, n = children && children.length; i < n; ++i) {
if (p = faceInvert(children[i], coordinates)) return p;
}
}
function faceDegrees(coordinates) {
return face(coordinates[0] * radians, coordinates[1] * radians);
}
var proj = projection(forward),
stream_ = proj.stream;
proj.stream = function(stream) {
var rotate = proj.rotate(),
rotateStream = stream_(stream),
sphereStream = (proj.rotate([0, 0]), stream_(stream));
proj.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart();
sphereStream.lineStart();
outline(sphereStream, root);
sphereStream.lineEnd();
sphereStream.polygonEnd();
};
return rotateStream;
};
return proj.angle(-30);
}
function outline(stream, node, parent) {
var point,
edges = node.edges,
n = edges.length,
edge,
multiPoint = {type: "MultiPoint", coordinates: node.face},
notPoles = node.face.filter(function(d) { return abs(d[1]) !== 90; }),
b = bounds({type: "MultiPoint", coordinates: notPoles}),
inside = false,
j = -1,
dx = b[1][0] - b[0][0];
// TODO
var c = dx === 180 || dx === 360
? [(b[0][0] + b[1][0]) / 2, (b[0][1] + b[1][1]) / 2]
: centroid(multiPoint);
// First find the shared edge…
if (parent) while (++j < n) {
if (edges[j] === parent) break;
}
++j;
for (var i = 0; i < n; ++i) {
edge = edges[(i + j) % n];
if (Array.isArray(edge)) {
if (!inside) {
stream.point((point = interpolate(edge[0], c)(epsilon))[0], point[1]);
inside = true;
}
stream.point((point = interpolate(edge[1], c)(epsilon))[0], point[1]);
} else {
inside = false;
if (edge !== parent) outline(stream, edge, node);
}
}
}
// Tests equality of two spherical points.
function pointEqual(a, b) {
return a && b && a[0] === b[0] && a[1] === b[1];
}
// Finds a shared edge given two clockwise polygons.
function sharedEdge(a, b) {
var x, y, n = a.length, found = null;
for (var i = 0; i < n; ++i) {
x = a[i];
for (var j = b.length; --j >= 0;) {
y = b[j];
if (x[0] === y[0] && x[1] === y[1]) {
if (found) return [found, x];
found = x;
}
}
}
}
// Converts an array of n face vertices to an array of n + 1 edges.
function faceEdges(face) {
var n = face.length,
edges = [];
for (var a = face[n - 1], i = 0; i < n; ++i) edges.push([a, a = face[i]]);
return edges;
}
function hasInverse(node) {
return node.project.invert || node.children && node.children.some(hasInverse);
}