-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluate_probs.py
139 lines (118 loc) · 4.84 KB
/
evaluate_probs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import configparser
import glob
import json
import os
import pickle
import random
import shutil
import time
from collections import OrderedDict
from pprint import pprint
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import uvloop
from data_io_speaker import SpeakerDataset, SpeakerTestDataset
from loss_functions import (AdaCos, AMSMLoss, DisturbLabelLoss, L2SoftMax,
LabelSmoothingLoss, XVecHead, SoftMax, ArcFace, SphereFace)
from models_speaker import ETDNN, FTDNN, XTDNN
from test_model_speaker import test, test_nosil
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from utils import (SpeakerRecognitionMetrics, aggregate_probs, drop_adapt, drop_adapt_combine,
drop_classes, drop_per_batch, schedule_lr)
from train_speaker import parse_config
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def parse_args():
parser = argparse.ArgumentParser(description='Evaluate probs of SV model')
parser.add_argument('--cfg', type=str, default='./configs/example_speaker.cfg')
args = parser.parse_args()
assert os.path.isfile(args.cfg)
args._start_time = time.ctime()
return args
def evaluate_train(ds_train):
use_cuda = not args.no_cuda and torch.cuda.is_available()
print('='*30)
print('USE_CUDA SET TO: {}'.format(use_cuda))
print('CUDA AVAILABLE?: {}'.format(torch.cuda.is_available()))
print('='*30)
device = torch.device("cuda" if use_cuda else "cpu")
writer = SummaryWriter(comment=os.path.basename(args.cfg))
num_classes = ds_train.num_classes
if args.model_type == 'XTDNN':
generator = XTDNN()
if args.model_type == 'ETDNN':
generator = ETDNN()
if args.model_type == 'FTDNN':
generator = FTDNN()
if args.loss_type == 'adm':
classifier = AMSMLoss(512, num_classes)
if args.loss_type == 'adacos':
classifier = AdaCos(512, num_classes)
if args.loss_type == 'l2softmax':
classifier = L2SoftMax(512, num_classes)
if args.loss_type == 'softmax':
classifier = SoftMax(512, num_classes)
if args.loss_type == 'xvec':
classifier = XVecHead(512, num_classes)
if args.loss_type == 'arcface':
classifier = ArcFace(512, num_classes)
if args.loss_type == 'sphereface':
classifier = SphereFace(512, num_classes)
generator.train()
classifier.train()
generator = generator.to(device)
classifier = classifier.to(device)
model_str = os.path.join(args.model_dir, '{}_adapt_start.pt')
for model, modelstr in [(generator, 'g'), (classifier, 'c')]:
model_path = model_str.format(modelstr)
assert os.path.isfile(model_path), "Couldn't find [g|c]_adapt_start.pt models in {}".format(args.model_dir)
model.load_state_dict(torch.load(model_path))
if args.multi_gpu:
dpp_generator = nn.DataParallel(generator).to(device)
data_generator = ds_train.get_batches(batch_size=args.batch_size, max_seq_len=args.max_seq_len)
if args.use_dropclass:
classifier.drop()
else:
classifier.nodrop()
if args.model_type == 'FTDNN':
drop_indexes = np.linspace(0, 1, args.num_iterations)
drop_sch = ([0, 0.5, 1], [0, 0.5, 0])
drop_schedule = np.interp(drop_indexes, drop_sch[0], drop_sch[1])
if TEST_SET:
full_probs = aggregate_probs(ds_adapt, generator, classifier, device,
batch_size=300, max_seq_len=args.max_seq_len, uniform=True)
np.save(os.path.join(args.model_dir, 'test_probs_uniform.npy'), full_probs)
else:
with torch.no_grad():
for i in tqdm(range(300)):
full_probs = []
for feats, iden in ds_train.get_batches_example(num_classes=40, egs_per_cls=42, max_seq_len=350):
feats = feats.to(device)
embeds = generator(feats)
probs = torch.softmax(classifier(embeds), dim=1)
full_probs.append(probs.cpu().numpy())
full_probs = np.sum(np.concatenate(full_probs), axis=0)
np.save(os.path.join(args.model_dir, 'train_probs_{}.npy'.format(i)), full_probs)
if __name__ == "__main__":
TEST_SET = False
args = parse_args()
args = parse_config(args)
pprint(vars(args))
uvloop.install()
ds_train = SpeakerDataset(args.train_data)
if args.test_data_vc1:
ds_test_vc1 = SpeakerTestDataset(args.test_data_vc1)
if args.test_data_sitw:
ds_test_sitw = SpeakerTestDataset(args.test_data_sitw)
if args.use_dropadapt:
if args.ds_adapt == 'vc':
ds_adapt = ds_test_vc1
if args.ds_adapt == 'sitw':
ds_adapt = ds_test_sitw
evaluate_train(ds_train)